النبت المحرزي

لقد كانت اثباتاً سابقة عن المرأة المحرزة على أساس أن الضوء الساقط صعبة عن النبتة المحرزة. وتحت هذا الشروط تكون صورة جافة ووضحة للجسم على الظاهرة حينما كان النبتة

عندما كانت النبتة المحرزة من الجسم والمتردمة عند النبتة المحرزة تكون كل نقطة من نقاط الجسم أكثر من صورة توكدي هذه الظاهرة بالنبت المحرزي.

يوضح الشكل 1 أن هذه الظاهرة حيث تنبعث النبتة من نقطة يمكن تشكيل هبزا أولياً بارتفاع

عن المحور الأساسي.

والنبتة المحرزي الذي يجري جميع الأشعة المتردمة وحركة نحو النبتة focal surfuse يستخدم شائعة صعبة عند مستوى النبتة.

للاختفاء من النبتة بنقطة تكون فيها دائرة الضراء المنجردة في النبتة المحرزة وتكدي هذه الدائرة بالقرب على أن النبتة المنجردة

النبتة المحرزي المنجردة وبعدها نتجع في مكان غير النبتة في النابت المحرزي. (1)
في هذا الشكل سطح السطح (1) على المراية في النقطة (2) والانكسارة جسم
قوانين الانكسار بزاوية (1) حيث (1) ،
بزاوية (2) القاطع المستقيم متوانين
\[\angle TCA \leq 0^\circ \]
\[CX = TX \]
حسب القاعدة فإن النقطة المكيدة في النقطة عقب
\[CT \leq CX + TX \]
\[\frac{1}{2} CT \leq CX \]
النقطة (1) كلاهما نصف قطر لكرة.
\[\frac{1}{2} CA \leq CX \]
أي أن
لم تنتج عن البيئة (1) وكلا القطرات النقطة (2) من القطب (2) كلا الاقتراب النقطة
في البيئة (1) حتى تترتب عليها بزوايا سطوع صغيرة (الضوء محوري).

معالجة الإشعاع الكروي:

قامت خلال السنوات الماضية مجموعة تصميم تختص من هذا الظاهرة افتراض
استخدام مسطح المراية الكروي ينتج ميزة PARABOLIC
المراية في المحيط ستجد جميعها في البيئة لاحظ الشكل (3)

وهناك مايدعي مراية مصنوع كالتي كرارة في الشكل (3) حيث تستخدم عدسية مكعبة كروية
الوحيده ويطلب الوجه السفلى محورها بالقطعة المركزية للكرة مكعبة حيث تنبع الإشاعة
المتوانية في نقطة البيئة.

د. ك. م. المعماري
الإسكتيزم

يتم الحصول على هذه الظاهرة عند وقوع صورة نقطة في الجسم على سطحية من المحور الأساسي للمراة مقعرة أو مرآة محدبة، في حالتين، فإن الظاهرة الساقطة على المرأة سوء كانت متوازية أو غير متوازية.

تتكون زاوية صغيرة مع المحور المركزي، نتيجة لذلك تكون صورتين خطيتين متعامدينين بدلاً من تكوين صورة نقطة ساقطة مشتركة.

تمت دراسة هذا الظاهرة بواسطة T & S، وتجمع الظاهرة الساقطة عمودياً على الاتجاه الاتجاهي في المستوي (RASE) عند Z، بينما تجمع الظاهرة الساقطة عمودياً على الاتجاه في المستوي (JAKE) عند S، إذا وضعت شاشة عند E.

وحسبما تشير المعادلة، فإن الصورة الناتجة هي صورة خطية عمودية عند S، ودائرة عند L.

توضح الخط الأفقي عند T، إذا ما أُخذنا جميع مؤامرات T & S لدوامات مختلفة في النقطة تكون (نقطة الصورة)، سطح بيضوي تعلق مستوي على النقطة كما في الشكل (2)، وكما اقترحه الرؤياء من الاتجاهات والرقم المتوازي على المحور للقتلات الخطية من بعضها وأصبحت رخيصت أيضاً.

ثم قصد الاستكترم، يستخدم لتحديد موقع صورة الاستكترم، وتشمل المعادلة التالية لتحديد موقع صورة الاستكترم:

\[
\frac{1}{S} + \frac{1}{S'} = \frac{2}{r \cos \phi} \rightarrow (1)
\]

\[
\frac{1}{S} + \frac{1}{S'} = \frac{2 \cos \phi}{r} \rightarrow (2)
\]

وقد قسمت S و S' على امتداد الشعاع الرئيسي، وتم اختيار زاوية أول الشعاع Chief ray وتمت Z في الاستكترم الرئيسي بينما تمثلت T نصف قطر تكبير المرآة.

إن منظور في (التي ستستئن لاحقاً) أو مرآة ماتيني، المستخدمة والتي تستخدم في المنظورات البصرية لتقليل الاستكترم، في المرآة الكروية، وتكون الصورة S و T فيرطان للعودة من بعضهما.

إن المرآة البصرية خالية من الزوائد الكروية، لكنها تعاني من الاستكترم كبير، حيث تبعد S عن T لذا يفضل استنفادها في المنظورات البصرية.

د. كرم المشيداني
النصل التاسم
الزئيب في العدسات

إلى مئوية ضوئية عرضية موازية لمحرور عبسة يؤدي إلى اجتماع جميع
أشعة في نقطة واحدة (الإبسة). إن الحدود عن موقعاً الصرورة المتوقعة رياضياً ينعي بمزيج
الكروي. إن أنما التي تعتمد على كارثة المذكورة أعلاه هي مع مثالية لمسات ذات تفتحات
ضوئية صغيرة، وكلاهما قد يحدث سحابة أميّه وأيّه عن المحرور الرابع للعجبة زد الزئيب
أكبر وأكثر. إن طرق الإقلاع من هذا الزئيب ينوعه مختلفة تعتبر من أعمت معضلات
الهندسة البصرية. إن حدود دراستنا الحالية لا يسمح لنا لاستخدامها إلى كافة النظريات الرياضية
لحل هذه المعضلات ولكنستطيعها على بعض الطرق المستخدمة والتي تعطيها النتائج عملياً
ممتازة للتغطية من ضوئية الزئيب في العدسات.

نظرية الرمية الأولى (مفتتح الجملات):

لقد وجد أن أفضل طريقة لتحقيق نظرية مرضية للزئيب الشماعي في العدسات هو أن تبدأ
بمصمم مسار الشعاعي للعدسات، وكما يلي:

لاحظ في الشكل الشعاع مال مع المحرور بزاوية Θ بيسط على سطح كروي أحادي التجربة
M عند القطة T، وينكسر ملتقاً بالمحور عند M، حيث تكون صورة القطة
ويستخدم العلاقات الثنائية للزوايا:
1- زاوية الانحراف عندما ينتج المحرور عكس عقارب الساعة خلال زاوية أقل من
π
2
لتنطيق على الشعاع.
2- زاوية السطوع والإضاءة تعتبر موجبة عند دوران المستقيم بزاوية مثبطة π
2
لتنطيق
العْجبة.

د. كريم المشيداتي
3- لذا تكون الزوائـا

\[
\sin(\pi - \phi) = \frac{\sin \theta}{r + s} \quad \sin \pi \cdot \cos \phi - \sin \phi \cdot \cos \pi = \frac{\sin \theta}{r}
\]

\[
\sin \phi = \frac{\sin \theta}{r + s} \quad \therefore \sin \phi = \frac{r + s}{r} \sin \theta \ldots (1)
\]

\[
\sin \phi' = \frac{r}{n} \sin \phi' \ldots (2)
\]

\[
\text{MTM} \Rightarrow \theta + \phi + \phi' \angle \text{MTC} = \pi
\]

\[
\text{BUT, } \phi + \angle \text{MTC} = \pi \Rightarrow \therefore \phi = \theta + \phi' - \theta
\]

\[
\therefore \phi' = \theta + \phi' - \phi \ldots (3)
\]

وتعطينا المعادلة (3) امكانيّة حساب المسافة التي تقع بين تقاطع الشعاع مع المحور وبين النطّب A ، أي حساب المسافة S'.

ويطبق قانون الجيب على المثلث TCM وكأن يكون:

\[
\frac{\sin \theta'}{r} = \frac{\sin \phi'}{s'} - r \quad \therefore s' = r - r \frac{\sin \phi'}{\sin \theta'} \ldots \ldots \ldots (4)
\]

والحالة الخاصة المهمة عند سكّين الشعاع الموازي للمحور على السطح الكردي عندما:

\[
\sin \phi = \frac{h}{r} \ldots \ldots (5)
\]

\[
\text{ALSO} \Rightarrow \theta' = \phi' = \phi
\]

وتعدد المعادلات من 1-5 تم زوايا السقوط والميل وبدالة حبوب الزوايا وقد لاحظنا عند اشتقاق صيغة كاوس للترب كالمستخدم في جيوب الزوايا وجعلها مساوية للقيم الزوايا ذاتها باعتبار أن الأشعة الساقطة أشعة محورية إلا أنه عند سقوط الأشعة مشكلة زوايا كبرى مع D. كرم المشهداني
المطور وعلى ارتفاعات كبيرة وعندما لا تصبح صيغة كاوس تجديد موجات الصور الميكروية.
ويجب استخدام جيوب الزاوية المربعة في المعادلات أعلاه.
وستستخدم نظرية منكوفين أثناء قيام الجيوب وهي:
\[\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \frac{\theta^7}{7!} + \frac{\theta^9}{9!} - \ldots \quad \text{ETC} \]

وللاحظ من المعادلة أعلاه أنه عندما تكون قيمة الزاوية صغيرة يكون الحد الثاني من المعادلة
و waypoints من حدود صغيرة يمكن إضافةه إذا استخدم الحد الأول فقط أي صيغة كاوس وعندما

\[\sin \theta = \theta \]

تكون قيمة \(\theta', \phi', \phi \) صغيرة أيضاً:
\[\phi = \frac{r+s}{r} \theta \quad \ldots \ldots (1), \quad \phi' = \frac{n}{n'} \phi \quad \ldots \ldots (2), \quad \theta' = \phi' + \theta - \phi \quad \ldots \ldots (3), \quad S' = r - \frac{r \phi'}{\theta'} \quad \ldots \ldots (4) \]

بتعويض (1) في (2) والنتيجة في (3) والنتيجة في (4) نحص على المعادلة كاوس:
\[\frac{n}{n'} + \frac{n'}{S'} = \frac{n - n'}{r} \]

The first order Theory
إن هذه المعادلة عامة بينما متوقع بنظرية المربعة الأولى أن

إن التحلل من صورة \(\frac{\theta}{\sin \theta} \)

لفتوس أكبر من طول المستقيم في 10% عندما تكون الزاوية 10° بينما يسول

الفرق بينها إلى 10% عندما تكون الزاوية 40°. وتشمل هذه النتائج سببًا لزيادة الكروي

العدسة.
نظرية المركبة الثالثة

إذا استخدم الحدود الأولى في المعادلة (1) لجمع الزويا المذكورة في المعادلات من (5) ينتج عنها ما يلي:

\[\sin \theta = \theta - \frac{\theta^3}{3!} \rightarrow \sin \theta' = \theta' - \frac{\theta'^3}{3!} \]

\[\sin \phi = \phi - \frac{\phi^3}{3!} \rightarrow \sin \phi' = \phi' - \frac{\phi'^3}{3!} \]

وتدعى هذه المعادلات بنظرية المركبة الثانية ويبعث في هذه النظرية عن زيغ أي شعاع (كبوس) من مسبعين. وتدعى تزامن وتماثل عينات الزوايا المثلثية من جميع أنواع الزيغ (جميع أنواع الزيغ) تكون قيماً لهذه المسافات. تتراوح فيها مستوية للأصفر ولا يوجد حقيقة أي مقطوعة صفرية خانة من جميع الزيغ.

فهناك عينات S1 من وجود الزىغ الكروي وإذا كان S1 = 0 فلا وجود للزيغ الكروي.

بينما يمكن S2 عن الزىغ (وينسق S2 عن الاستعداد)

بينما يعتبر S1 عن الاستعداد و S2 عن انحناء المجل.

ويعبر S1 عن نشوء الصورة لأنها تتراوح في Chromatic Abruption.

كثير من الزهور على الأوراق المتضخمة.

وذلك زيغ آخر ينتج عن استخدام ضوء متعدد الأوراقيات الحدث عند لاقد.

spherical aberation of single surface

الزيغ الكروي في السطوح طائعة الركاز

لقد سبق الحديث عن أنواع الزيغ الكروي في المرايا ونفترض أن الزيغ الكروي يعتبر عن التفويض الحاصل في صورة جسم تنتج عن تكون صور متعددة على مساحة المحيط الأساسي تنظر في الوصف للحصول على أوضح صورة للجسم في جميع المساحة التي ت تكون فيها جميع الصور.

ويتكون هذه الصور المتجمعة في الرؤية من أنبأ رؤية إلى أعلى وضوح خارجة عن مصادر قاسية على المحيط الأساسي لأشعة الموجية الشاذة من الألماناية ومجموعة صور متعادلة للجسم الموضوع أمام السطح الكروي.

إن حالة مماثلة نسا سبق ذكرها تحدث في السطوح ثانية التكز أو ما يسمى بالمدفوعات حيث

لاحظ في الشكل التالي أيضاً تلك الظاهرة في سطح أحادي التكز.
 حيث تمثل

نقطة على المحور الأفقي تبعت قشرة مغرة متميزة ت Eğitimها على ارتفاع

المحور البصري الأساسي، وتشمل هذه الأشعة على المحور الأساسي في مواقع متزامنة

تشكل صورة مذابة الوضعية تقريا إلى القطب أعلاها عن المحور شكله مغروبا كمنحة عند

N'M'M السطح الكروي نصف قطره R, ورغمه على بعد 1/2 만 القطب A. إن المسافة

قياسا للقيمة النزيغ الكروي في هذا السطح والذي يحصل على قيمة من معاينة مربوطة

الثالثة;

\[\frac{n'}{s} = \frac{n'-n}{r} + \left[\frac{h^2 \cdot n \cdot n'}{2f'} \cdot \left(\frac{1}{r} + \frac{1}{s} \right) \right] \cdot \left(\frac{1}{r} + \frac{n'-n}{n \cdot s} \right) \]
(1)

ويحث أن الأشعة المعديرة (صيغة كارسن) هي:

\[\frac{n}{s} = \frac{n'-n}{r} \]
(2)

فضاء الحد بين القوسين يمثل مقدار الحبوب في ناتج المثلثة (1) عن معدالة المرتبة الأولى،

والتي تتراوح قيمةا طوريا مع h² ويعكسها مع s

وإذا كان الجسم في النهاية أي \(s = \infty \) تصبح العلاقة (1) كما يلي:

\[\frac{n'}{s} = \frac{n'}{f'} + \frac{h^2 \cdot n^2}{2 \cdot f' \cdot n' \cdot r^2} \]

بالنسبة على

\[\frac{1}{s^2} = \frac{1}{f'} + \frac{h^2 \cdot n^2}{2 \cdot f' \cdot n^2 \cdot r^2} \]
(3)

ولنلاحظ أيضاً أن الزمنز الكروي يكتسب طوريا مع h² (ارتفاع البصرة الساقطة عن

المحور البصري للسطح).

(1) 1029: 111144

(2) 898: 111144

(3) 898: 111144
دراسة ظاهرة الزئبق الكروي في العدسات:

<table>
<thead>
<tr>
<th>r_i = 15 cm</th>
<th>r_2 = 15 cm</th>
<th>d = 3.0 cm</th>
<th>n = n' = 1.0</th>
<th>n'_{i} = 1.625</th>
</tr>
</thead>
<tbody>
<tr>
<td>h = 6.0 cm</td>
<td>h = 4.0 cm</td>
<td>h = 2.0 cm</td>
<td>h = 0 cm</td>
<td>h = 0 cm</td>
</tr>
<tr>
<td>$SIN\phi = \frac{h}{r}$</td>
<td>+0.4000° 0</td>
<td>0.2666°</td>
<td>0.1333°</td>
<td>0.40000°</td>
</tr>
<tr>
<td>$SIN\phi = \frac{n}{n'}SIN\phi_i$</td>
<td>+0.246153°</td>
<td>0.1641025°</td>
<td>0.08205128°</td>
<td>0.24615385°</td>
</tr>
<tr>
<td>q_1</td>
<td>-23.578178°</td>
<td>15.4660119°</td>
<td>7.6622555°</td>
<td></td>
</tr>
<tr>
<td>q'_{i}</td>
<td>-14.2500327°</td>
<td>9.4451058°</td>
<td>4.7064843°</td>
<td></td>
</tr>
<tr>
<td>$\theta' = \phi_i' = \phi_i$</td>
<td>-9.3281458°</td>
<td>6.020906°</td>
<td>2.95577°</td>
<td></td>
</tr>
<tr>
<td>$SIN\theta'$</td>
<td>-0.16208858°</td>
<td>0.10489134°</td>
<td>0.05156506°</td>
<td></td>
</tr>
</tbody>
</table>

ويظهر هذا زيادة كروية متدرجة 1.79214 سم للارتفاع 4 سم أي نسبة 15.6% من البعد البصري للأشعة العمودية. وتحل في المخطط البياني توضيحًا لهذا التغير في الزئبق من أعلى الارتفاع إلى أعلى الارتفاع.

نلاحظ من النشاط أن الارتفاعات الارتفاعات يكون شكل بيضاوي. يعتبر الزئبق Parabola موجبة إذا كانت الأشعة المنكسرة تقطع المحور الأذى إلى البداية العمودية وسالبة إذا قطعته بهيمياً.

د. ك. ع. المهمين

ذكاء الدم.
ويسمى أول بالزئبق الكروي الموجب والثاني بتزئيب الكروي السالب.

ومن ثم نلاحظ في الشكل التالى خصائص مختلفة للأشكال وكلها ذات بعد بؤري واحد وقطر واحد.

وتنسير قيم الزئبق الكروي تابلاً ما بين 4.0 و1.0 = q = 4.0 - 1.0 = 3.0

وقد تكون قيمة الزئبق الكروي صفرة إطلاعاً إن ما نستنتج أن الزئبق الكروي يمكن تقليله إلى أدنى حد بالتبسيطات ذات أضيق أطراف شرائط للغزوبة ولكن لا يمكن إلغاءها تماماً.

وتتميز بنبتورير نرمز Bending of lens

ويمى q بمعامل الشكل

\[q = \frac{r_2 + r_1}{r_2 - r_1} \]

للعدسة الهيكلية الأولى رقم (1)

\[q = \frac{-5 - 15}{-5 + 15} = -2 \]

ويستخدم هذا المتغير لتمييز أي عدسة ذات زئبق كروي أقل وكما منمقع لاحقاً.

ويمكن ملاحظة العدسة ذات q = 0.5 هي العدسة ذات الزئبق الكروي الأدنى.

الزئبق الكروي لهذه العدسة ارتفاع تجميع 0.1 يمكن حسابه من الشكل البصلي التالي.
التناقص المتبقي من نظرية الزاوية الثلاثية (مختارة الزاوية الكبرى):-

حيث أن اسقاط معادلة الزاوية الكبرى من نظرية الزاوية الثلاثية طويلة فإننا نستظهر بعض نتائجها والتي تبيننا في بحثنا لفترة.

للعدسة الدقيقة هناك معادلة بسيطة كما يأتي:

\[L_s = \frac{h^4}{8 f^2 n(n-1) \mu_h - \frac{n^2}{n-1}} \]

\[q = \frac{r_2 + r_1}{r_2 - r_1} \]

\[P = \frac{s - s'}{s' + s} \]

حيث:

ولنعد إلى السؤال قليلاً ونأخذ حالة تكون صورة لجسم نقطي موضوع على محوفر العدسة الأساس كما في الشكل أدناه.

إن الشفاعة المتفاوتة من الجسم والساقط على سطح العدسة على ارتفاعه من المحور الأساس ينكسر في المصفوفة مرتين مرة على كل رغبة إيجاد معكشة صورة للجسم عند نقاطه مع المحور الأساس بصورة ثانية عند تساعد مع المستوي البؤري المحوري (ردي المستوي) الذي يكون من إسقاط الأشياء المحورية.

د. أكرم المشهداني
ومعنى البعد بين المستويين الأساسيين (موقع الصورة الثانى) وبين التقطيع الأول بالزئبق الكروي الطريقي Longitudinal أُعدم.

ويبقى المستويات المحمية بالزئبق الكروي المحيط ويرمز له بالرمز S_A. بعد الصورة المكونة لحجم عين على بعد S من القطب الشعاع مثلى من الأفق بزاوية كبيرة وصغير على وجه الصورة بترتيب زائف عن المحور الأساسي بينما تتضمن الصورة المستوية لنفس الجسم ولكن لأنشطة محورية بعيدة بالخدمة. بينما تتضمن f بعد البؤرية للمنسة وهي بعد الصورة لنجم واقع في النهاية عن العدة ويبعث باشعة قريبة من المحور الأساسي.

\[
\text{Long.S.A} = S'_p - S'_{
\text{h}} \\
\tan \theta' = \frac{\text{Lat.S.A}}{\text{Long.S.A}} = \frac{\text{Lat.S.A}}{S'_p - S'_{
\text{h}}} \\
\text{Lat.S.A} = (S'_p - S'_{
\text{h}}) \tan \theta' \quad \text{(5)}
\]

إن حل المعادلة (1) بدالة تحل محل على:

\[
\text{Long.S.A} = S'_p * S'_{
\text{h}} * L_s \quad \text{(6)} \]

\[
\text{Lat.S.A} = S'_p * h * L_s
\]

وبعد الصورة المكونة لشمع مثال عن الأفق (لا يمكنه): هو

\[
S'_{
\text{h}} = \frac{S'_p}{1 + S'_p * L_s} \quad \text{(8)}
\]

ويقرر الطريق الأول والثاني لتباع مدار الشعاع على ارتفاعات وتوزيع ابتداء لمعنى التدويرية من منحنى طريق رسم المسار عند القيمة العليا في الوجه.

أين الحالة ذات q مئوية تكون ذات زئبق كروي قبل وحيث أن q تمثل شكل الحالة أو تسبب

كير pq، إذا يكون حسب اختيار للطقس زئبق الكروي ولكن بعد انقضاء تماماً.

وبالتالي إلى التدابير أن تطبيق بين المنحنى النافذ عن تطبيق نظرية المدارية الثالثة:

Ray Tracing method

والحصول على أقل قيمة للـ(q) نعود إلى المعادلة (1) وتستفيد بالنسبة لـ(q) ليكون:

د. أ. كرم المشيداوي
\[
\frac{dL}{dq} = \frac{\frac{1}{2} (n-1) q^2 + 4(n-1)(n+1) p}{n(n-1)^2}
\]

وبمثابة هذه المعادلة نحن نقول:

\[
q = \frac{2(n-1)p}{n-2}
\]

ويتبين هذه المعادلة أن قيمة \(q\) تحدد بالمعادلة بالمعادلة؛ والمعادلة \(P\) (بعد تعديل و بعد التحذير) والمعادلة \(n\) معامل

\[
q = \frac{r_2 - r_1}{r_2 - r_1}
\]

\[
(q - 1) r_2 = (q + 1) r_1
\]

\[
\begin{align*}
q &= \frac{r_2 - r_1}{r_2 - r_1} \\
(q - 1) r_2 &= (q + 1) r_1 \\
r_1 &= \frac{(q-1)}{(q+1)}
\end{align*}
\]

لذا فلموقع معين للكأبرة وموقع معين للجسم في منظومة يسري من خلال نصوص محاولة يمكن استعمال قيمة \(q\) لتحقيق أدنى زمن كرير في المنظومة أو تصنيع عدة بالمحاولات المتسلقة لتحقيق أدنى زمن كرير في المنظومة، أو في هذا التصميم الخاص نعود إلى قيم \(q\) و

\[
M = \frac{s' - s}{s' + s}
\]

\[
\frac{1}{f} = \frac{s' + s}{s' s} \Rightarrow s' + s = \frac{s' s}{f}
\]

\[
P = \frac{f}{s'} = \frac{1 - \frac{1}{s}}{s'}
\]

\[
but \quad \frac{1}{s} = \frac{1}{f} \quad \text{and} \quad \frac{1}{s'} = \frac{1}{f} - \frac{1}{s}
\]

\[
p = \frac{2f}{s} - 1 \quad \text{and} \quad p = 1 - \frac{2f}{s'}
\]

\[
1 + \frac{1}{s} = \left(n-1 \right) \frac{1}{r_1 r_2} = \frac{1}{f} \quad \text{(Makers formula) \ldots (12)}
\]
ومعلوم كيم q و p بعد استخراج لاه S و S' من المعادلة (11) يكون:

$$s = \frac{2f}{1+p} \rightarrow s' = \frac{2f}{1-p}$$

$$r_1 = \frac{2f(n-1)}{q+1} \rightarrow r_2 = \frac{2f(n-1)}{q-1}$$

وان حاصل قسمة المعادلات الثلاثة r_1, r_2, r_3 ستعطيك المعادلة (12) أيضاً:

$$S = S'$$

وتعادل بين هذه القيم ونحصل على المعادلة (13).

الحل:

$$s = 2c, s' = 10 cm$$

$$p = \frac{10 - \infty}{10 + \infty} = -1$$

ويعتبر لهذه القيمة في المعادلة (4) يكون:

$$q = \frac{2(2.25-1)(-1)}{1.5+2} = \frac{2.5}{3.5} = 0.714$$

ويمكن ملاحظة أن هذه القيمة لم تكن في الشكل (2) فن قرب النقطة الدنيا ونعتني نسبة من القطر، نستعمل المعادلة (13) نحصل على:

$$r_1 = \frac{0.714-1}{1.714} = -0.286$$

$$r_2 = \frac{0.714+1}{1.714} = -0.167$$

الإشارة النيلية تتطلب أن نعتني نسبة لعدة معادلة الجزيئات ونطبق المعادلة (13) نحصل على:

$$r_1 = \frac{10}{1.714} = 5.82 cm \rightarrow r_2 = \frac{10}{0.286} = 35.0 cm$$

Ω: هذه المعادلة تتطلب بين المعادلة رقم (3) والمعادلة رقم (2) القطر الحديث عنها.

وينظر هنا أن الشرط الأكبر تحقق ينقع بدءاً من الأقلية المكعبية وهذا بين نسب الوجوه محبب للعدة المكعبية المكعبية (رقم 3) بموجبة الأقلية المكعبية في أغلب المنمنمات المكعبة لتشكل المكعب، حيث تكون 10 = Q وموضوعاً كما في الشكل (1) تربة من النقطة الدنيا من المنمنط، بينما ما كانا وضع المعادلة لأصبحت 10 = Q وهذا يحدث زيادة كبيرة.

اربع مرات من زيز العجلة الأولي لاحظ الشكل (1).
لا يمكن إلغاء تأثيرات تزجيح كروي في منظومة بصرية تستخدم عدسة واحدة ولكن يمكن ذلك باستخدام أكثر من عدسة حيث أن التزجيح الذي يسببه الأولى تغيب العدسة الثانية شرط أن تكون إحدى العدستين موجبة والثانية سالبة (عدسة محدبة وعدسة مفتوحة) مثلًا. استخدام عدستين محدبة ومفتوحة لإلغاء التزجيح الكروي يجب أن تكون العدسة البعيدة ذات قدرة عالية وجد القدرة أهمية معالجة من التزجيح، وذلك لأن التزجيح يتسبب طردًا مع مكعب عدد البؤري وذا يمكن إلغاء أحدهما لتثبيت الآخرى.

\[p = \frac{1}{f} \Rightarrow p = (n-1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right) \ldots \ldots (1,4) \]

أما في حالة تماس سطحي عدستين فيجب أن يكون نصف قطر عدسة وحجم الثانى متساويين بينما يمكن أن يختلف نصفا التزجيح الأخرين وغير المتضمنين فيجدنا أن الزيج كروي.

** coma aberration **

الزيج الثاني لنظرية المرتبة الثالثة يدعى الزيج الكروما (الذيلين) وذلك لأن الصورة المتكررة لجسم نقطي خارج محور العدسة تشبه المذابح. قد تبين لنا سابقاً أن الصورة جسم يقع على المحور يمكن تركيزها على ثلاثة وروضح كبير أي ما قياس قيمة الزيج الكروي. أما إذا كان الجسم ولياً خارج المحور الأساسي فإن الصورة المتكررة لا تكون واضحة إلا بالانكسار من زيج المذابح.

يرمز الشكل (2) زيج الكروما لجسم نقطي يقع خارج محور العدسة. وتلاحظ أن الأشعة المركزية لم يقترن مع محور العدسة. بينما تلتقي الأشعة الطرقتين المارة بالنقطة A عند النقطة B.
لم يسبق أن كننا على المخاريط التي تكون الأشعة المرئية لمحور العين والسلطة على
ارتفاعات B مختلفة ونحن أن كل نقطة تمش صورة سبعة وحيث أن تلك نقطة موضع مختلفة
عن بقية النقطة تكون مجموعة صورة مختلفة في وضعية وأسماء الظاهرة بالذراع الكروي،
ما في حالة ديكوس فإن كل مخروط يكون مجموعة نقاط تتشكل مع بعضها دائرة تتقاطع مع
الدوائر التي تشكلها المخاريط الأخرى وكما في الشكل (2) والوضيقة في الشكل (3) حيث
تستعمل النقطة (1) الأشعة الطيفية الرمية عند B بينما تتمثل النقطة (3) الأشعة الطيفية عند
مستوى الأفق الذي يدعى اشعة القيمة ومبسطة كما في الشكل (3).

وبصورة عامة فإن كل زوج من نقاط من النقطة من محيط قاعدة المخروط يكون صورة نقطة-
وتتميغ نظرية الرمية الثلاثية نصف قطر دائرة المنطقية بالعلاقة:

\[C_r = \frac{j \cdot h^2}{f^3} \left(G + Wg \right) \] \(\ldots (15) \)

حيث يوضح الشكل (4) معنى الرمز: N = زبالة p معدل السكان والشكل على التوالي
أما G, W فيما:

\[G = \frac{3(2n + 1)}{4n} \quad W = \frac{3(n + 1)}{4n(n - 1)} \]

وعنوة الشكل (2) فلاحظ أن أكبر مخزونات الأشعة الورمية وبالنسبة للأشعة المحيطة.
والتكبير للأشعة الطيفية إزالة من الأشعة المحيطة وبإذا هذا النسب السائبة أما في حالة
الآثملا نتضح بالمذنب المرجع.
وتتميغ العلاقة الثلاثية كشف العدد:

\[y = C_s (2 \cdot \cos 2\psi) \quad Z = C_s \cdot \sin 2\psi \]

وبلاحظ من الشكل (4) ان التكبير:

\[C_T = 3C_s \]

د. كرم المشهداني
وإلي دراسة تأثير شكل العدسة على زيادة المذنب تم دراسة على الأنواع السبعة من العدسات المبار ذكرها والتي أعطيت النتائج التالية وتمثلها بيانياً في الشكل (17) ولقد استخرجت الأشعة متوارزة تعتمد على المحور بزاوية قدرها 11°.
نلاحظ أن الزيت الزاوي (5) أن قيم الزاوي الكروي دائماً سرجة بينما تكون قيم زاوي الكروي مستقيماً مساراً بزاوية سالبة وموجبة وقائمة بزاوية الموجب عند القيمة 0.4 ونلاحظ التزاوج بين قيم زاوي الكروي وننحنها عند القيمة 0.5 ونلاحظ أن قيم زاوي الكروي مستقيماً بالشكل التالي (البشكل 11) والشكل أعلاه تمت من القائمة Q لجسم أصل المحور الأساسي.
إن جميع الأضلاع الواقعة في المستوى المماس R8 سوف تتقاطع عند T بينما جميع الأضلاع الواقعة في المستوى المماس RS سوف تتقاطع عند S.

ولذا من اختيار مدين المستوى، فإن جميع الأضلاع المارة بالمساحة سوف تقع في خطين يعبران T أو S. ويتكون حقل الصور قريباً في شكل قرصي تقريباً وهو موضع أدنى تشبيه في الصور المتكافئة. وذا أخذنا أبعد مختلطة تقاطع عن Q محاور المتساوة ورسمنا S لكل منها تكون عندنا شكل بيضاوي عند توصيل نقاط T، S ونكتب T كما في الشكل (2-1) بقرنه عند T.

الإذن للزيف الكروي

وأذا هذا يعني أن الحالة المصورة بالختاب 3.4 تكون q ضمن هذه الحذف تتراوحت الزيت الكروي وتعطي أدنى زيفًا كرويًا لإيجاد قيمة q التي تجعل

\[C = \frac{j \cdot \theta}{f^2} + H' \]

\[q = -\frac{C}{W} \ldots (16) \]

إن الحالة التي تحقق في p فهي هذه المعادلة نقل في نوعية متعددة كما إن أذن الزيت الكروي الكروي كما أن تكون عديد الزيت الكروي أيضاً.

\[q = \frac{C}{W} \ldots (16) \]

العطلة المذكورة في الصور البصرية:

الكروية البصرية العادلة من الزيف الكروي والكروية كدها بالبصريات وبصورة عامة.

وعدا حالات خاصة لا توجد عدة خالية تماماً من زيف عادة:

(ASPIGMATISM)

أذا كان كل الحذف الأولي في مجاعة مبدئ، ساواه لتصغر فإن جميع الأضلاع من

نيكهة لفظية حتى الصفصاها الأساس أو من محاور قريبة تلقاها من المحور الأساس للحالة

ستكون صوراً نقطية حسب الإذن أولها. أو أن يكون هناك أي أثر للزيف الكروي والذبي.

أما إذا كان الجسم النقلي واقفاً على بعد ما من المحور الأساس فإن الصور النقطية له تحقق:

فبناً عندما يكون الحد الثالث في مجاعة يساوي صفر.

وإذا تفوتها الحالة في تحقيق ذلك، بل أن الحالة تعاني من الإستكشام، وأن التشوه في

الصورة المتكونة يذكى عند "ASPIGMATISM". وتوضيح هذه الظاهرة تبين بالشكل (16).
إن قيمة الاستكشاف تأتي في الشكل المتصادم T، S، ولاحظ أنه عند المحور الأساسي يكون كل السطحين
عند F إذا كانت فاصلة مساوية لمصفة عبر أي لا يوجد زوايا مكسورة للأشعة المعمودية
وبنهاية بالزيادة مع ابتداء السماوي محور وسطى مع مرور عند نقطة الصورة على المحور المركزي.
وتشتهر عنصر الزوايا (الاستكشاف) أنه محور عند وقع سطح T على مرآة سطح S كما في
الشكل (1) وتساوي في حالة وقع سطح T إلى مرآة S. ويتحاجن نقاط الفروق في
شكل سطح S بين النقطة والمرآة حيث يكون بحاجة وسطياً منطقياً على المستوى البصري
للمرآة المفرقة.

لوضع إطارات (مثل إستثناء الدراجة الهوائية بشكل مصفر للغاية) على المحور الأساسي بحيث
يقطع مرآة عند M، فإنها ستكون صورة أطراها على السطح T بينما تكون صورة أطراها على
السطح S، ونبدأ السحب على السطح R السطح و S، أما على السطح T والمستدير T، S، أيضاً.
وتصورات العين عند السطح T موازية لمحور الاضطراب كما في الشكل
الأيسر للشكل (1) بينما تكون جميع الصور للسطح S مخطوطة موازية للأشعة كما في يمين
الصورة.
إن المعادلة التي تُعطي بعد صورة الاستكترام لمقطع كارثي أحياني إلكترام هي:

$$\frac{n \cos^2 \phi}{S} + \frac{n' \cos^2 \phi'}{S'} = \frac{n' \cos \phi' - n \cos \phi}{r}$$

حيث ϕ زاوية السطوع و ϕ' زاوية الإلكترام على السطح الفحري للشعاع الرئيسي. r نصف قطر تكير السطح. S بعد الجسم عنه S' بعد صورة τS عنه مقاسان على استطاع الشعاع الرئيسي.

وقد وجد أنه باستخدام حجز ذات نقطة للنسبة r في بعد الصورتين S, S' يمكن استخدام المعادلة:

$$\frac{n + n'}{S} = \frac{n' \cos \phi' - n \cos \phi}{r} \quad (17)$$

$$\frac{1}{S} + \frac{1}{S'} = \frac{1}{\cos \phi} \left(\frac{n' \cos \phi'}{\cos \phi} - 1 \right) \left(\frac{1}{r_1} - \frac{1}{r_2} \right) \quad (18)$$

ويستعمل هذه زاوية المقطع الرئيسي مع المحور الأساسي بينما تُمثل زاوية إلكترام الشعاع الرئيسي داخل العينة.

وتطبق المعادلات أعلاه تدل على أن زيج الاستكترام يعتمد تقريباً على بعد البؤري، ولا يتأثر إلا أبلياً بشكل اللمسة.

لقد تم استخدام عددين مختلفين بالإشارة لتقليل تكبير الكروي إلا أنها تزيد من تقليل الاستكترام لذا نلجأ إلى استخدام حاجز داخلي للنهاة أو لمسة ثانوية تقليل هذا التكبير. إن المعابد ظاهرة زيج الاستكترام من إلغاء الانحناء للنهاية من الصورة المتكونة باختصار صورتين S, S' ويمكن تقليل زيج الاستكترام كما درى نتكره باستخدام مساعدة متعددة متباعدة S, S' بالقدرة والمساحة كما يمكن تقليل زيج أكثر باستخدام ما يدعي الحاجز (نقطة في حاجز المنحنية خدا) ويتم ذلك بتركيب عددين أو عددين المنطقة الصغرى من حيث المسافة الفاصلة بينهما وكذلك مواقع الحاجز بالنسبة للمنحنية جدياً.

وتلاحظ في الشكل (8) أربع حالات لإيقاف صورة الاستكترام ناتجة عن تغير المسافات الفاصلة بين العددين بشكل العددين في الشكل (8). في الحالات S, S' تستعمل منحنية تحتوية واحدة فقط أو عددين متاتين أساا الشكل S, S' في نقل استخدام عددين تصل بينهما مسافة متناسبة لتحدي منحنية تحتوية بين S، S' إذا...
الجغرفة المسافة بين审들이ین أمکنا الحصون على المساحة الثانیة (الشكل 8-ج) وهي صورتين
الخطين مستقیمين T,S وتخییر المسافة أكثر تحصیل على الحالة (8-h) حيث يتبدال T,S, T,S
مواقيما على جانبي "مستوى البیزیي الأساسي B" إن جميع الأشكال أعلاه هذا الشكل
(8-ب) تعنی من الاستکمزم بدرجات متغیرة.

ه.就如同بي، p الذي تكون عليه الصورة التنظیم للجسم التنظیم يدعی بمطيال
Petzval surface

الحنداء المغایر

إذا كانت المجمعتين الثلاثة P,S,T مجمعتين مبتدأ فإن الصورة خالية من أنواع الزیات
السلاط وستكون بالتالي للجسم التنظیم الواقع على المحيط الأساسي للعدسة أو خارجه صورة
نقطتیة وتمت تشريفت أعلاه تقع الصورة على سطح بتزلزال المنحنی كما في الشكل (8-b)
أضفه، ولكن بالرغم من أن زین الاستکمزم قد عدنه إذ أن سطح المستوي البیزیي للصورة
منحنی الشكل.

فإن لايحظ أن الصورة المستکونة في الشكل (8-b) تكون شديدة الوضوح في المركز (القائه
سطح مع المستوي البیزیي B ومشوؤشة عند الأطراف تظاهر ذهنا هذا الطلاء— العقیقد
فقط للشكل البیزیي) أما في الشكل (8-j) تكوین الصورة شديدة الوضوح عند المنتصف
وباهتة عند المركز والطرف العلوي.

لكل منظومة بصریة من وجهة النظر الحسابیة سطح بتزلزال، فذا أثبتت قيمة قيمة المدعات

عملاً ماصاً k réalisها n في المنظومة فإن شكل سطح بتزلزال p لا يتغير ب вели q أو المساقات
بين عدسات المنظومة تلك الاضطرابات (q,d) التي تتحكم بشكل مکسی ت، S، ولكن بحيث

تبقى السماة بين البعدين PS وPT ثابتة وهي 1/3

cd stop

ويمكن معالجة إعداد السجل لمنظومة بصریة تحتوي عدسة واحدة باستخدام الحاجب
والذي يعمل علی عنصر ثالث في المنظومة. ويقوم الحاجب بتحديد مقدار الأشعة الساقطة على
المنشأة من أن جسم نقطة بحیث أن الأشعة الرئيسية لا تقطع من نقاط الجسم تمامًا إلى

عمر من متغیرة من المنارةة الشكل (9).
ومناظر في الشكل (1، 2، 3) الصور المتزامنة تشتمل على مربع مجهز بمنظومات بصرية مختلفة تتضمن تشويقا للصورة، فكلاًهما (5) صورة خاصة من زيت البزري، بينما الصورة (6) تضمن تشويقا للصورة بحسب تناسق التكبير العرضي في النجوم الخارجي (الحوار). يميز بـ
pincushion dis بـamicron عضو يتشوه بشبه barrel dis زيادة التكبير العرضي عند الحورات (تحو الخارجي).

وتكون النسخة الرقيقة خالية خاصة من زيت البزري مما كان بعد الجسم حناء ولكنها ليست خاصة مع أنوع الزراعة الأخرى في نفس الوقت، وفقاً وضع حاجز أسلاكياً أو بجوداً تولد في الصورة التي تكون فيها شرقياً بدءاً وضع الحاجز بحاجز مع النسخة إذا وجود للمشري.

ويمكننا تطهير طرق التشويق من أنواع الزراعة كما بـ:

- الزراعة الكروية وزيت البزري (المستقبل) باستخدام عدسات متماسين بأشكال مناسبة.
- زيت الاستكشاف وانعكاس المجال باستخدام عدسات متماسة بصرية متعددة وبأبعاد مناسبة.
- zygotic tweezers يقال باستخدام الحورات.

Chromatic aberration

الزروات اللبية

لم نواعي في دراسة أنواع الزراعة تغير معامل إكثار العدسات مع الفون حيث كنا نتعامل مع مطلأ أحادي الفون. إن جميع المواد المنخفضة للضوء تتغير معاملات إكثارها مع لون الضوء الساكن، إذا توقع صورة متعددة لهب للضوء بعدة مودافع الألوان أما بالنسبة للضوء متعدد الألوان البعيد جداً فإنه الصورة المتكونة له عبارة عن عدد نقاط ملونة مضطبة على سطح المحرز البصري للعينة القريبة إلى العدسة صورة باللون البينسيجي.

ومن ناحية نحن نشير إلى الزراعة المعنية بغير تغيير الزراعة فإن التكبير الصورة يجب أن يختر كالتالي مع تغيير الزراعة وكما موضح بالشكل (12)
وظائف في الصورة أعلاه استخدام نوتيتين الطولين قطاع الأحمر والبنفسجي للفطرين من الجسم.

وتحتاج في الحالة، نقوم بنقل نقطة محورية M نقطة عاشرة للحمر Q وتنقل نقطة بين صورتي المصور بالزئبق.(liq)

ال론ي الطويل بينما يدور الاختلاف في الارتفاع بالزئبق الزئبقي المشروع، حيث أن قيود فتحذي الزئبقين الثانيين مقربة تقدم الزئبق الداخلي الساقية نكرحها لذا كان النتائج منها لتفصيلات

المنظمة البصرية أمرًا أساساً. ويتضح من وجود درجة متوازنة من الزئبق الزئبق إلا أننا سندرس طريقيتين أو آليات ضريرية استخدم حدستين اقتصادها من زجاج الرنان والثانية من الفلنت ركداً في الفرد (13)

مكابية الفرقة للاستنساخ

حيث تمتلك عددية زجاج الرنان ذات p الموجهة عالية في الندرة التناسليه للحدسة المتصلة ذات الندرة p الواقعة لزجاج الرنان إذا فإن المحصلة النتائجية للندرة محجة بينما تكون الندرة التناسليه معادلة إذا يحصل تركيز لجميع الألوان تقريباً في نفس النقطة وهذا يقابل أن

الندرات الخاصة في مسار تشع في أنواع الزجاج لا يناسب مع الندرة التناسليه له، أو بالأصح فإن لافت تختلف باختلاف المواد المنبوذة وإن بعد البراري للون الأصر p لمستدين رقيقين مؤتمرين أو القدرة p للمنظمة هي:
\[
\frac{1}{f_D} = \frac{1}{f'_D} + \frac{1}{f''_D} \rightarrow or \rightarrow p_D = p'_D + p''_D
\]

وتستقبل متغيرات زجاج الكرانون بينما تمتلء متغيرات زجاج النفط التي تعتزم

على الطرق الموجة تنضوء الدباع أو معانژ الانكسار

\[
p_D = (n'_D - 1) \left(\frac{1}{r'_1} - \frac{1}{r'_2} \right) + (n''_D - 1) \left(\frac{1}{r''_1} - \frac{1}{r''_2} \right) \quad ... (21)
\]

\[
K' = \left(\frac{1}{r'_1} - \frac{1}{r'_2} \right) \rightarrow K'' = \left(\frac{1}{r''_1} - \frac{1}{r''_2} \right) \quad ... (22)
\]

\[
p_D = (n'_D - 1)K' + (n''_D - 1)K'' \quad ... (23)
\]

\[
p_F = (n'_F - 1)K' + (n''_F - 1)K'' \quad ... (24)
\]

\[
p_C = (n'_C - 1)K' + (n''_C - 1)K'' \quad ... (24)
\]

\[
\therefore when \rightarrow P_f = P_c
\]

\[
\frac{k'}{k''} = \frac{(n'_F - n''_C)}{(n''_F - n''_C)} \quad ... (25)
\]

ويحث أن البشر والدام في النتائج الايام من المعادنة إعلاها الموجة إذ يجب أن تكون

 brigida والثانية موجبة وهذا يعني أن أحد المستويات يجب أن تكون سالبة

\[
p'_D = (n'_D - 1)K' \rightarrow p''_D = (n''_D - 1)K''
\]

divition

\[
\frac{K'}{K''} = \frac{p'_D (n''_D - 1)}{p''_D (n'_D - 1)} \quad ... (26)
\]

divition

\[
\frac{p''_D}{p'_D} = \frac{(n''_D - 1) \left(n''_F - n''_C \right)}{(n'_D - 1) \left(n'_F - n'_C \right)} \quad ... (27)
\]

حيث أن \(v'' \), \(v' \) تمثل ثابت النصل لكل نوعي الزجاج
\[\nu' = \frac{(n'_d - 1)}{(n'_F - n'_C)} \Rightarrow \nu'' = \frac{(n''_d - 1)}{(n''_F - n''_C)} \quad (28) \]

وحيث أن القدرة التدريبية (التشفيرية) موجهة دائماً أن الأشارة السالبة تعني أن قدرتي الحدثين

يجب أن تكون متعاكستين في الأشارة أي أن أحدى الحدثين لامع أو الأخرى مفرقة:

\[\frac{p''_D}{p'_{D'}} = -\frac{\nu''}{\nu'} \]

\[\therefore \frac{p''_D}{\nu''} = -\frac{p'_{D'}}{\nu'} \]

\[\therefore \frac{p''_D}{\nu''} + \frac{p'_{D'}}{\nu'} = 0 \Rightarrow \nu' \ast f' + \nu'' \ast f'' = 0 \quad (29) \]

\[-p'_{D'} = \frac{p''_D \ast \nu'}{\nu''} \rightarrow \text{but} \rightarrow p''_{D'} = p''_D - p'_{D'} \]

\[\therefore -p'_{D'} = \frac{p''_D \ast \nu' - p'_{D'} \ast \nu'}{\nu''} \]

\[-p'_{D'} \ast \nu'' - p''_D \ast \nu' = p''_D \ast \nu' \]

\[p'_{D'} (\nu' - \nu'') = p''_D \ast \nu' \]

\[\therefore p'_{D'} = \frac{p''_D \ast \nu'}{(\nu' - \nu'')} \quad (30) \]

\[\text{and} \]

\[p''_D = \frac{p''_D \ast \nu'}{(\nu' - \nu'')} \quad (31) \]