Electric Circuits

7-1

* Electric current

In a such a substance electric charge can be transferred from one point to another by a general drift of the charged particles within it. Such a movement of electric charge is called an "electric current".

Current in solids

* Materials through which an electric current will pass are known as (Conductors). These materials have free electrons.

** Materials in which there are no charged particles that are free to move are known as (Non-conductors) or (Insulators). There are no free electrons.

* Semi-conductors - in the semi-conductors only a very small proportion of the (valence-electrons) are free to move through materials.
Elements of electric circuits

1. Power supply (Dynamo, cell)
2. Wires
3. Loads
4. Switches

* The direction of the current

- When there is an electric current in a circuit, two physical effects are observed:
 1. A heating effect.
 2. A magnetic effect.
العزم الكهربائي يعتمد على الكمية السريعة للتيار، قانون أمبير ينص على ذلك.

الطريقة يمكن رؤية ذلك من خلال هذا الحرف:

\[Q = qN \]

وانه عدد البلدات المتصلة

\[I = \frac{Q}{t} \]

حيث:

- \(I \) هو التيار في الأمبير
- \(Q \) هو العزم الكهربائي
- \(t \) هو الوقت في الأصل

لدينا أيضاً تجربة عديدة، والتي تسمى النهائي، حيث يمكننا إضافة التيار من خلال:

\[\text{Instantaneous current} \]

يجعل التيار أسرع

\[I = \frac{dQ}{dt} \]

في الكيلومترات لكلثوبي، ونسبة

\[\text{Coulomb} \]

\[\text{Ampere} \]

العالم.

هو عزم التيار الكهربائي الذي يتم حسابه كثوبي.
Kirchhoff's First Law

At any junction-point in a circuit (such as B in figure) the rate at which charge enters the junction \((E_1 + I_2)\) is equal to the rate at which charge leaves it \((I_3)\).

This result is sometimes known as Kirchhoff's first law of electric circuits.
Currents in liquids

Electron flow

Anode

Cathode

Electrodes

\[\text{Cu(H}_2\text{O)}_{4}^{2+} \]

Copper dissolved

\[\text{Cu(H}_2\text{O)}_{4}^{2+} \]

Copper deposited
Specific Change.

Each ion carries a definite charge and has a definite mass, so that the mass liberated or deposited at the surface of an electrode is proportional to the total charge passed.

This is called [Faraday's first law of electrolysis]

\[
\text{specific charge} = \frac{Q_i}{m_i} = \frac{\text{total charge passed}}{\text{total mass deposited}}
\]

\[
Q = \frac{It}{M}
\]
7-4 Electrical Energy

If the charge separated is \((Q) \) and the electrical potential energy produced is \(W \), then we define the e.m.f. \((E) \) by

\[
\text{e.m.f. } E = \frac{W}{Q}
\]

Example: A small electric cell in a torch can maintain a current of \((0.2 \, \text{A}) \) for about 2 hours. Estimate the total energy converted in the torch in this time, when the e.m.f. is \(1.5 \times 8 \, \text{V} \).

\[
Q = It
= 0.2 \times (2 \times 3600)
= 1440 \, \text{C}
\]

\[
W = EQ
= 1.5 \times \frac{1440}{2}
= 9.18 \times 16 \, \text{kgf}
\]
Potential difference

The potential difference (P.D.) between two points in a circuit is an indication of the strength of the electric field acting to drive electric charge from one point to another.

\[V = \frac{E \cdot q}{q} \]

\[V = \frac{\int \mathbf{E} \cdot d\mathbf{l}}{q} \]

\[E = \frac{V}{d} \]

\[W = E_{P_1} - E_{P_2} = q \left(V_1 - V_2 \right) \]
Kirchhoff's second law of electric circuits:

The sum of the p.d.'s round any closed loop must always be zero.

\[\text{P.d. between B and A} = 0.5 \, V \]
\[\text{P.d. between D and C} = -0.9 \, V \]

Sum \[\text{Zero} \]

Similarly for the loop ABEFA

\[\text{P.d. between B and A} = 0.9 \, V \]
\[\text{E and B} = +0.3 \, V \]
\[\text{F and E} = -1.2 \, V \]

Sum \[\text{Zero} \]
Electric Field Strength

If we have a current in an conductor of constant cross-section, the potential decreases uniformly along its length from its positive end to its negative end.

If the p.d. between the ends of the conductor is \(V \) and its length \(l \) we have:

\[
\text{Potential gradient } E = \frac{V}{l} = \frac{[V]}{[m]} = \text{V/m}
\]

\[
\text{Electric Cells (Battery)} \ 1 \ 2 \ 3 \ 4 \ 5
\]

\[E_1 Q + E_2 Q + E_3 Q \]

\[Q = \text{charge} \]

the total e.m.f. \(f = \frac{\text{total energy}}{Q} \)

\[
E_1 Q + E_2 Q + E_3 Q = \frac{Q(E_1 + E_2 + E_3)}{Q} = E_1 + E_2 + E_3
\]
Thermocouples

If we form a circuit of two different metals A and B, a small e.m.f. E is found to act in it when the junctions of the metals are at different temperatures.

$$e.m.f = E = E_1 - E_2$$

A thermocouple is a form of heat engine converting internal energy to electrical energy.
7-6 Electrical Power

The rate at which energy is converted from one form to another in some mechanical or electrical device is called its "power."

\[W = Pt \]

\(\text{The unit of power is the J s}^{-1} = \text{watt (w)} \quad (P = \frac{W}{s}) \)

\[P = VI \]

\(\text{current: I} \) \hspace{2cm} \(P \text{.d. : V} \)

\(\text{e.m.f. : E} \)

\((P, \text{التي} \text{هي} \text{مثبطة}) \) \hspace{2cm} \text{سرير Arduino}
7-3

\[I_1 = I_2 + I_3 \]

\[I_1 = 2I' + I'' \]

\[I_1 = 3I' \]

\[I' = 0.39 \]

\[2I'' = 0.39 \]

\[I'' = 0.39 \]

\[I'' = 2 \times 0.39 = 0.78 \]

7-4

\[0.2 - 0.15 = 0.5 \text{ A in D} \]

B, C is full brightness

\(I \) current in B and C = 0.2 A
\[I = \frac{\Phi}{t} \quad \implies \quad \Phi = It \]

\[= 0.25 \times (12 \times 60) \]

\[= 180 \text{ C} \]

The total amount of charge passed

\[N = \frac{\Phi}{e} = \frac{180}{1.6 \times 10^{-19}} = 1.1 \times 10^{21} \]

no. of electrons

7-8

\[I = 1.5 \text{ mA} \]

\[= 1.5 \times 10^{-3} \text{ A} \]

\[N = \frac{I}{e} = \frac{1.5 \times 10^{-3}}{1.6 \times 10^{-19}} = 9.3 \times 10^6 \]

\[= 9.3 \times 10^{15} - 6 \times 10^{15} \]

\[= 3.3 \times 10^{15} \text{ s}^{-1} \]

no. of hydrogen ions.
7.9 \[V = \frac{S}{t} \Rightarrow t = \frac{S}{V} = \frac{0.5}{8 \times 10^{-3}} = 0.0625 \times 10^{-7} \]

\[I = \frac{Q}{t} \Rightarrow Q = tI = 2 \times 10^{-3} \times 0.0625 \times 10^{-7} = 0.12 \times 10^{-10} \]

\[N = \frac{Q}{t} = \frac{0.12 \times 10^{-10}}{0.0625 \times 10^{-7}} = 0.075 \times 10^9 \]

7.10 \[\text{no. of drops} = 10 \times 60 \times 12 = 7200 \]

\[V = 7200 \times 5 \times 10^{-8} = 2.16 \times 10^{-6} \text{ the volume of the water} \]

\[Q = 4 \times 10^{-15} \times 7200 = 2.88 \times 10^{-13} \text{ total charge} \]

\[I = \frac{Q}{t} = \frac{2.88 \times 10^{-13}}{10 \times 60} = 0.48 \times 10^{-13} \]
7-11 \[V = \frac{I}{e_{nA}} = \frac{I}{\Phi} - \frac{I}{e_n} \]
\[= 1.9 \times 10^6 - \frac{1}{1.6 \times 10^{-19} \times 10^{19}} \]
\[= 0.75 \times 10^{-3} \text{ m.s}^{-1} \]

7-13 \[V = \frac{I}{e_{nA}} \Rightarrow n = \frac{I}{e_{nA}} \]
\[= \frac{1.2 \times 10^{-3} A}{1.6 \times 10^{-19} \times 4 \times 9 \times 10^{-6}} \]
\[= 0.07 \times 10^{-1} \]

Note: The text is in English, but some parts are written in Arabic.
8.1 Ohm's Law

An electric current I is produced in a conductor by applying a potential difference V across it. The relationship between these two quantities for metal conductors is "Ohm's Law" when all these were kept constant.

The quantity V/I is a constant for a given metallic conductor under steady physical conditions. It is known as its resistance R. Thus

$$R = \frac{V}{I}$$

The unit of R is therefore V/A^{-1} (Ω).
* Fixed resistors

- Wire-wound type
- Carbon composition type
- Carbon film type

* Variable resistors

a. As a rheostat - for controlling the current in a low resistance device

b. As a potentiometer - for controlling the p.d. across some device
Energy Conversion in Resistors

The electrical power P converted in a resistor is given by

$$P = VI$$

but $P_r = \frac{V}{I} \Rightarrow V = IR$

$$P = I^2 R$$

8-2 Combinations of Resistors

a - Resistors in Series

$$R_{\text{ser}} = \frac{V}{I}$$

$I_t = I_1 = I_2 = I_3$

$V_t = V_1 + V_2 + V_3$

$R_t = R_1 + R_2 + R_3$
b - Resistor in parallel

\[V_t = V_1 = V_2 = V_3 \]

\[I_t = I_1 + I_2 + I_3 \]

\[\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \]

\[
\begin{align*}
\frac{R_1}{R_2} &= \frac{R_3}{R_4} \\
\text{when the bridge is balanced} \quad & \text{no current in } R_5 \\
\text{there is the same current in } R_1 \text{ and } R_2 \ (I_1) \\
\text{and } R_3 \text{ and } R_4 \ (I_2) \quad & \frac{R_1}{R_2} = \frac{R_3}{R_4}
\end{align*}
\]

\[\text{potential } R_1 \text{ and } R_3 \text{ are the same} \ (I_1 R_1 = I_2 R_3) \]

\[\frac{R_1}{R_2} = \frac{R_3}{R_4} \]

\[I_1 R_2 = I_2 R_4 \]
8-3 Battery resistance

When a current is taken from a cell (or any other source of e.m.f.), it is found that the p.d. across it falls.

\[\text{Internal} \quad \text{external} \]
\[R_{\text{int}} = \frac{E - V}{I} \]

\[R_{\text{ext}} = \frac{V}{I} \]

\[(R_{\text{ext}} + R_{\text{int}}) = \frac{E}{I} \]

\[R_{\text{tot}} = \frac{E}{I} \]
8.4 Resistivity

The resistance of a conductor at given temperature depends on its length and cross-sectional area, and material.

\[R = \frac{L}{A} \]

\[\therefore f = \frac{RA}{L} = \frac{[S][m^2]}{[m]} = S \cdot m \]

The reciprocal of the resistivity of a material is known as its conductivity.

\[\sigma = \frac{1}{f} \]

\[\sigma = \frac{L}{RA} \cdot [S^{-1} \cdot m^{-1}] \]
8-4 \(\text{p.d.?} \quad R = 10 \, \text{M} \Omega \quad I = 5 \, \text{mA} \)

\[
R = \frac{V}{I} \quad \Rightarrow \quad V = R \times I
\]

\[
\therefore \quad V = 10 \times 10^6 \times 5 \times 10^{-6} = 50 \, \text{volt} \quad \text{p.d.}
\]

8-6

\[U_1 = U_1 + U_2 \quad \text{(b)} \]

\[6 = 3 + U_2 \quad \Rightarrow \quad U_2 = 3 \, \text{volt} \]

\[R_2 = \frac{V}{I} \quad 20 = \frac{3}{I} \quad \therefore \quad I = 0.15 \, \text{A} \]

\[R = \frac{V}{I} = \frac{3}{0.15 \times 10^{-3}} = 20 \, \text{k} \Omega \]

\[U_1 = U_1 + U_2 \quad \text{b) } \]

\[6 = U_1 + 2 \]

\[\therefore \quad U_1 = 4 \, \text{volt} \]

\[\text{b) } \quad \text{R}_1 = \frac{V}{I} = 20 \, \text{k} \Omega \quad I = 0.2 \, \text{mA} \]

\[R_2 = \frac{V}{I} \]

\[\text{Output:} \text{ } 7 \]
8-31 \[P_e = \frac{F \cdot l}{A} = \frac{4.8 \times 10^{-7} \cdot 4}{1 \times 10^{-6}} \]

\[= 1.92 \, \Omega \]

\[R \cdot q = \frac{V}{l} = \frac{0.96}{4} = 0.24 \, \text{V/m} \]

\[R = \frac{V}{I}, \quad 1.92 = \frac{V}{0.5} \Rightarrow V = 0.96 \, \text{V} \]

8-37

\[E = 1.5 \, \text{V} \]

\[V = 1.3 \, \text{V} \]

\[I = 0.4 \, \text{A} \]

\[P_{\text{in}} = \frac{(E - V)}{I} = \frac{1.5 - 1.3}{0.4} \]

\[= 0.5 \, \text{W} \]
Storing Electric Charge

Capacitors:
An arrangement of two conductors close together, but insulated from one another.

\[Q \propto \frac{1}{d} \]

\[Q = \epsilon_0 \varepsilon A \]

Calibration Constant

Charging

Discharging
Capacitance

\[Q \times V \]

\[Q = C \times V \]

\[C = \frac{Q}{V} = \left[\text{C. V}^{-1} \right] = \left[\text{Farad} \right] \]

\[\mu F = 10^{-6} \text{ F} \]

\[\mu F = 10^{-12} \text{ F} \]
The charging current

\[I = \frac{dQ}{dt} \]

\[I = C \frac{dV}{dt} \]

\(I \) is the current in the wires joined to a pair of capacitor plates.

\[Q = CV \]
Capacitors in Parallel

Where \(Q \) is the total charge on the capacitors, the sum of their separate charges.

\[
Q = Q_1 + Q_2 + Q_3 + \cdots + Q_n
\]

\[
\therefore Q = CV \quad \therefore \quad C = \frac{Q}{V}
\]

\[
Q_x = C_1 V_1 + C_2 V_2 + C_3 V_3
\]

\[
Q = V(C_1 + C_2 + C_3)
\]

\[
C_t = C_1 + C_2 + C_3 + \cdots + C_n
\]

Capacitors in Series

\[
V_t = V_1 + V_2 + V_3
\]

\[
\begin{aligned}
\sqrt{\frac{Q}{C}} &= \frac{Q}{C_1} + \frac{Q}{C_2} + \frac{Q}{C_3} \\
V &= \frac{Q}{C} \left(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \right) + Q
\end{aligned}
\]

\[
\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots + \frac{1}{C_n}
\]
Alternating current in capacitors

If an alternating current supply is joined to the plates of a capacitor charge flows on and then off the plates as the potential difference between them oscillates; and there may be a larger alternating current in the connecting wires.

The magnitude of the alternating current I in capacitor of capacitance C may be calculated as follows:

$$I = C \frac{dU}{dt}$$

If a sinusoidal alternating p.d. at peak value V_0 and frequency f is joined to the capacitor we have

$$V = V_0 \sin(2\pi ft)$$
The maximum current occurs at the moment when the p.d. V is zero, when the p.d. is changing at the maximum rate. The peak value I_0 of the current is therefore given by

$$I_0 = C \frac{dV}{dt}$$

$$I = C (2\pi f V_0)$$

Charging and discharging

Energy storage

The total energy W_E stored in the capacitor is:

$$W_E = \frac{1}{2} C V^2 = \frac{1}{2} \frac{Q^2}{C}$$

Since $Q = CV$.
14-6
\[b = 1.3 \times 10^{-8} \text{ C/div} \]
\[\text{e.m.f.} \, F = 6 \text{ volt} \]
\[\theta = 22 \]
\[Q = ? \]

\[Q = b \theta = 1.3 \times 10^{-8} \times 22 \]
\[= 28.6 \times 10^{-8} \]

\[C = \frac{Q}{V} = \frac{28.6 \times 10^{-8}}{6} \]
\[= 4.7 \times 10^{-8} \text{ F} \]

14-7
\[C = 100 \text{ nF} \]
\[V = 200 \text{ V} \]
\[t = 4.5 \]

\[Q = CV = 100 \times 10^{-6} \times 200 \]
\[= 2 \times 10^{-2} \text{ C} \]

\[I = \frac{Q}{t} = \frac{2 \times 10^{-2}}{4} = 0.5 \times 10^{-2} \]
\[= 5 \text{ mA} \]
14-8

\[C = 33 \text{ mF} \]
\[V = 4 \text{ V} \]
\[t = 605 \text{ s} \]
\[I = ? \]

\[I = C \frac{dV}{dt} = 33 \times 10^{-6} \frac{6}{60} \]
\[= 22 \times 10^{-6} \text{ AmP} \]

14-9

\[I = 50 \text{ mA} \]
\[V = 5 \text{ V} \]
\[t = 205 \text{ s} \]
\[C = ? \]

\[I = C \frac{dV}{dt} \]

\[50 \times 10^{-6} = C \frac{5}{205} \Rightarrow C = 200 \times 10^{-6} \text{ F} = 200 \text{ mF} \]
14 - 14

\[C = 180 \text{ PF} \]

\[V = 12 \text{ V} \]

\[R = 250 \Omega \quad \Rightarrow \quad t = \frac{1}{250} \]

\[I = ? \]

\[I = C \frac{dV}{dt} = 180 \times 10^{-12} \times \frac{12}{1/250} \]

\[= 54 \times 10^{-8} \text{ Amp} \]

14 - 17

\[C_1 = 2 \text{ MF} \]

\[C_2 = 3 \text{ MF} \]

\[C_3 = 6 \text{ MF} \]

\(\Rightarrow \) in parallel

\[C_t = C_1 + C_2 + C_3 = 2 + 3 + 6 = 11 \text{ MF} \]

\(\Rightarrow \) in series

\[\frac{1}{C_t} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \]

\[\frac{1}{C_t} = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} \]

\[\frac{1}{C_t} = 0.996 \]

\[\therefore C_t = 1 \text{ MF} \]
14-18

\[C_A = 3 \text{ mF} \]
\[C_B = 1.5 \text{ mF} \]
\[C_C = 4.5 \text{ mF} \]

\[C_{CB} = C_B + C_C = 1.5 + 4.5 = 6 \text{ mF} \]

\[\frac{1}{C} = \frac{1}{C_{CB}} + \frac{1}{C_A} = \frac{1}{6} + \frac{1}{3} \]
\[\frac{1}{C} = 0.496 \]
\[C = 2 \text{ mF} \]

\[Q = \varepsilon CV = 2 \times 10^{-6} \times 9 = 18 \times 10^{-6} \text{ C} \]

\[V = \frac{Q}{C} = \frac{18 \times 10^{-6}}{6 \times 10^{-6}} = 3 \text{ V} = C_{CB} \text{ V} \]

\[V_A = 9 - 3 = 6 \text{ V} \]

\[Q_C = 3 \times 4.5 \times 10^{-6} = 13.5 \times 10^{-6} \text{ C} \]

\[Q_B = 3 \times 1.5 \times 10^{-6} = 4.5 \times 10^{-6} \text{ C} \]
\[C_1 = 16 \, \mu F \quad C_2 = 8 \, \mu F \]
\[V = 150 \, V \quad V = ? \]
\[Q = ? \quad W_E = ? \]

\[Q = C_1 V = 16 \times 10^{-6} \times 150 \]
\[= 2.4 \times 10^{-3} \, C \quad \text{ Stored Energy} \]
\[\frac{Q}{C_1} \]

\[W_E = \frac{1}{2} Q V = \frac{1}{2} \times 2.4 \times 10^{-3} \times 150 \]
\[= 18 \times 10^{-2} \, \text{Joul} \quad \text{Energy Stored} \]

\[C_F = C_1 + C_2 = 16 + 8 \]
\[= 24 \, \mu F \quad \text{Total Capacitance} \]

\[V = \frac{Q}{C} = \frac{2.4 \times 10^{-3}}{24 \times 10^{-6}} = 100 \, V \quad \text{Voltage Across} \]

\[W_E = \frac{1}{2} C V^2 = \frac{1}{2} \times 24 \times 10^{-6} \times (100)^2 \]
\[= 12 \times 10^{-2} \, \text{Joul} \quad \text{Energy Stored} \]

\[18 \times 10^{-2} - 12 \times 10^{-2} = 6 \times 10^{-2} \, \text{Joul} \quad \text{Energy Transferred} \]