Partial Derivatives

15.1 Function of two or more variables:

\[y = 0 \quad \text{x-axis} \]
\[y = x \quad \text{Line} \]
\[y = x^2 \quad \text{Parable} \]

Here: For one value of \(x \) get a unique and only value of \(y \).

Such relations are called single-valued if one variable function and we write \(y = f(x) \) one value \(x \) give two value \(y \) then we have multi-valued.

Example 1: \[z = x^2 + y^2 \]
\[z = f(x,y) = 3^2 + 4^2 = 25 \quad \text{single-valued} \]

Example 2: \[z^2 = x^2 + y^2 \]
\[z^2 = f^2 (3,4) = 9 + 16 = 25 \rightarrow z = \pm 5 \quad \text{multi-valued} \]

Example 3:
(1) Area (A) = \(x \cdot y \)
(2) Volume (V) = \(\pi r^2 h \)

In the function \(V \), the dependent variable is \(V \). The independent variables are \(r \) and \(h \).

Domain of \(f(x,y) \):

Example 4: \[f(x,y) = \frac{1}{x^2 - y^2} \]
\[x^2 - y^2 \neq 0 \rightarrow x^2 \neq y^2 \rightarrow y \neq \pm x \]
\[D = \{ (x,y) \mid y \neq \mp x^3 \} \quad y^2 \neq x^2. \]

Example 5: \[Z = \sqrt{y - x^2} \]
\[y - x^2 \geq 0 \Rightarrow y \geq x^2 \]
\[D = \{ (x,y) \mid y \geq x^2 \} \]
\[R: \text{is the set of all non-negative numbers} \]
\[Z \geq 0 \]

15.2 **Limits and Continuity**

Def: Let \(Z = f(x,y) \) be a function defined in some neighborhood of the point \((x_0, y_0)\) and let \(L \) be a number, then \(L \) is the limit of \(f \) at \((x_0, y_0)\) as \(x \) approaches \(x_0 \) and \(y \) approaches \(y_0 \), if for every \(\varepsilon > 0 \), there is a number \(\delta > 0 \) such that if

\[0 < \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta \]

then

\[|f(x,y) - L| < \varepsilon \]

Example 6: \[\lim_{(x,y) \to (1,2)} \frac{xy}{x^2 + y^2} = \frac{(1)(2)}{(1^2 + 2^2)} = \frac{2}{5} \]

Example 7: \[\lim_{(x,y) \to (0,0)} \frac{x^3 + y^3}{x^2 + y^2} \]

1. Let \((x,y)\) approach \((0,0)\) along \(y = 0 \)
\[\lim_{(x,y) \to (0,0)} \frac{x^3}{x^2} = 0 \]

The limit is exist and equal 0.

2. \(x = 0 \), \(\lim_{(x,y) \to (0,0)} \frac{y^2}{x^2} = 0 \)
Continuity: **Def.** A function \(f \) of two variables is continuous at \((x_0, y_0)\) if

1. \(f \) is defined at \((x_0, y_0)\)
2. \(\lim_{(x, y) \to (x_0, y_0)} f(x, y) = f(x_0, y_0) \)

Example 8: Show that \(f(x, y) = x^2 + y^2 \) is continuous at \((1, 2)\).

Solution:

1. \(f(1, 2) = 1^2 + 2^2 = 5 \)
2. \(\lim_{(x_1, y_1) \to (1, 2)} x_1^2 + y_1^2 = 1^2 + 2^2 = 5 \)

\(f \) is cont. at \((1, 2)\)

Exercises p. 799

Partial Derivatives

15.3: **Def.** If \(f \) is a function of variables then the first partial derivatives of \(f \) with respect to \(x \) and \(y \) are functions \(f_x \) and \(f_y \) defined as:

\[
\begin{align*}
f_x &= \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h} \\
f_y &= \lim_{h \to 0} \frac{f(x, y+h) - f(x, y)}{h}
\end{align*}
\]

Provide the limits exist:

\[
\begin{align*}
f_x &= \frac{\partial f}{\partial x} \\
f_y &= \frac{\partial f}{\partial y}
\end{align*}
\]
Example 9: If \(f(x, y) = x^3 y^2 - 2x^2 y + 3x \)

Find \(\frac{\partial f}{\partial x} \) and \(\frac{\partial f}{\partial y} \)

Solution:
\[
\begin{align*}
\frac{\partial f}{\partial x} &= 3x^2 y^2 - 4xy + 3 \\
\frac{\partial f}{\partial y} &= 2x^3 y - 2x^2 + 0
\end{align*}
\]

If \(f \) is a function of two variables \(x \) and \(y \) the second partial derivatives of \(f \) are denoted as follows:

1. \(\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} \) or \(f_{xx} \)
2. \(\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x \partial y} \) or \(f_{xy} \)
3. \(\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} \) or \(f_{yx} \)
4. \(\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} \) or \(f_{yy} \)

Note: \(\frac{\partial^2 f}{\partial x \partial y} \) differentialale first w.r.t. \(y \),

\(f_{yx} \) differentialale first w.r.t. \(y \).

Example 10: Find the second partial derivatives
\(\frac{\partial^2 f}{\partial y \partial x} \) of \(f(x, y) = x^3 y^2 - 2x^2 y + 3x \)

So:
1. \(f_{xx} = \frac{\partial}{\partial x} \left(3x^2 y^2 - 4xy + 3 \right) = 6xy^2 - 4y \)
2. \(f_{yy} = \frac{\partial}{\partial y} \left(2x^3 - 2x^2 + 0 \right) = 2x^3 = 2x^3 \)
\(\frac{\partial^2 f}{\partial x \partial y} = \frac{1}{y} \left(\frac{\partial f}{\partial y} \right) = \frac{1}{y} \left(2x^2 y - 2x^2 \right) = 6x^2 y - 4x \)

\(\frac{\partial^2 f}{\partial y \partial x} = \frac{1}{x} \left(\frac{\partial f}{\partial x} \right) = \frac{1}{x} \left(3x^2 y^2 - 4xy + 3 \right) = 6x^2 y - 4x \)

The mixed derivative theorem

Example:

\(w = e^{x^3} \sin z^2 - \ln x \frac{y}{z} \) Show that \(\frac{\partial^2 w}{\partial z \partial x} = \frac{\partial^2 w}{\partial x \partial z} \)

So:

\[\frac{\partial^2 w}{\partial x \partial z} = \frac{\partial^2 w}{\partial x \partial z} = \frac{\partial w}{\partial x} \left(\frac{\partial w}{\partial z} \right) = \left[2z e^{x^3} \cos z^2/y \right] \]

\[\frac{\partial^2 w}{\partial z \partial x} = \left[2z e^{x^3} \cos z^2/y \right] \]

Chain Rule

Case (1)

\(f(x, y, z) \) let \(x = x(t), y = y(t), z = z(t) \)

Then:

\[\frac{df}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial f}{\partial z} \cdot \frac{dz}{dt} \]

Example:

Find \(\frac{df}{dt} \) using

6) The chain rule

6) other methods (old method substitution)

For \(f(x, y) = x^2 e^y - xy^3 \)

\(x(t) = \cos t \) \(y(t) = \sin t \).

6) \(\frac{df}{dt} = (2x e^y - y^3)(-\sin t) + (x^2 e^y - 3xy^2)(\cos t) \)

6) \(f = \cos^2 t \cdot e^{\sin t} - \cos t \cdot \sin^3 t \)
\[e^{\cos^2 t} \cdot \sin^2 t \cdot (\cos t) + (e^{\sin t}) (2 \cos t \cdot \sin t) - [\cos \theta \cdot (\cos \theta \cdot \sin t) + \sin^2 \theta (-\sin t)] \]

Case (2): Let \(w = f(x, y, z) \) and \(x = x(r, s) \), \(y = y(r, s) \), \(z = z(r, s) \).

Then \(w = f(x(r, s), y(r, s), z(r, s)) \).

\[\frac{\partial w}{\partial r} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial r} + \frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial r} \]
\[\frac{\partial w}{\partial s} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s} + \frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial s} \]

Implicit Differentiation

Suppose \(F(x, y) \) and its partial derivatives \(F_x \) and \(F_y \) are continuous and the equation \(F(x, y) = 0 \) defines \(y \) as a differentiable function of \(x \). Then at any point where \(F_y \neq 0 \),

\[\left[\frac{dy}{dx} = -\frac{F_x}{F_y} \right] \]

Example: Find \(\frac{dy}{dx} \) if \(x^2 + \sin y = -2y \)

So:

\[\frac{dy}{dx} = -\frac{F_x}{F_y} \]

\(F_x = 2x + 0 = 0 \)
\(F_y = \cos y - 2y \) \(\therefore \left[\frac{dy}{dx} = \frac{-2x}{\cos y - 2} \right] \)
Directional Derivatives and Gradient Vectors:

Def: If the partial derivatives of \(f(x,y,z) \) are defined at \(P_0(x_0, y_0, z_0) \), then the gradient of \(f \) at \(P_0 \) is the vector:

\[
\nabla f = \frac{\partial f}{\partial x} \hat{i} + \frac{\partial f}{\partial y} \hat{j} + \frac{\partial f}{\partial z} \hat{k},
\]

in the domain of \(f \) obtained by evaluating the partial derivatives.

If \(f(x,y,z) \) contains partial derivatives at \(P_0(x_0, y_0, z_0) \) and \(\mathbf{u} \) is a unit vector then the derivative of \(f \) at \(P_0 \) in the direction of \(\mathbf{u} \) is the (it)

number:

\[
\frac{\partial}{\partial \mathbf{u}} f = (\nabla f)_{P_0} \cdot \mathbf{u}
\]

Example: Find \(\nabla f \) for \(f(x,y,z) = e^{xy} - x \cos(yz^2) \)

\[
\begin{align*}
\frac{\partial f}{\partial x} &= ye^{xy} - \cos(yz^2) \\
\frac{\partial f}{\partial y} &= xe^{xy} + xz^2 \sin(yz^2) \\
\frac{\partial f}{\partial z} &= -2xyz \sin(yz^2) \\
\n\nabla f &= (ye^{xy} - \cos(yz^2)) \hat{i} + (xe^{xy} + xz^2 \sin(yz^2)) \hat{j} - 2xyz \sin(yz^2) \hat{k}.
\end{align*}
\]
Tangent plane and normal line

Let \(f(x, y, z) = 0 \) be the equation of the surface \(S \).

The equation of the tangent plane at the point \(P_0(x_0, y_0, z_0) \) is

\[
\frac{\partial f}{\partial x} |_{P_0}(x-x_0) + \frac{\partial f}{\partial y} |_{P_0}(y-y_0) + \frac{\partial f}{\partial z} |_{P_0}(z-z_0) = 0
\]

The equation of the normal line to \(S \) at \(P_0 \) is the line perpendicular to the tangent plane and parallel to \(\nabla f \) at \(P_0 \), given by:

\[
\begin{align*}
\frac{dx}{\frac{\partial f}{\partial x} |_{P_0}} &= \frac{dy}{\frac{\partial f}{\partial y} |_{P_0}} = \frac{dz}{\frac{\partial f}{\partial z} |_{P_0}}
\end{align*}
\]

If none of the partial derivatives of \(f \) is zero at \(P_0 \), then the normal line is also given by:

\[
\begin{align*}
\frac{x-x_0}{\frac{\partial f}{\partial x} |_{P_0}} &= \frac{y-y_0}{\frac{\partial f}{\partial y} |_{P_0}} = \frac{z-z_0}{\frac{\partial f}{\partial z} |_{P_0}}
\end{align*}
\]

Example: find the tangent plane and normal line to the surface \(x^2 + xy - z^2 + 1 \) at the point \(P_0(1, 1, 1) \).

So:

\[
\begin{align*}
\frac{\partial f}{\partial x} &= 2x + yz, \quad \frac{\partial f}{\partial x}(1, 1, 1) = 3 \\
\frac{\partial f}{\partial y} &= xz, \quad \frac{\partial f}{\partial y}(1, 1, 1) = 1 \\
\frac{\partial f}{\partial z} &= xz - 3z^2, \quad \frac{\partial f}{\partial z}(1, 1, 1) = -2
\end{align*}
\]

tangent plane

\[
3(x-1) + (y-1) - 2(z-1) = 0
\]

\[
3x + y - 2z = 2
\]
Maximum and Minimum and

Saddle points:

Second derivative test

If \(f \) has a continuous first and second partial derivative on some open interval containing \((a,b)\) and \(f_x'(a,b) = f_y'(a,b) = 0 \) then:

1. \(f_{xx} < 0 \) and \(f_{xx} f_{yy} - f_{xy}^2 > 0 \)
 \(\Rightarrow \) Local max

2. \(f_{xx} > 0 \) and \(f_{xx} f_{yy} - f_{xy}^2 > 0 \) at \((a,b)\) \(\Rightarrow \) Local min.

3. \(f_{xx} f_{yy} - f_{xy}^2 < 0 \) at \((a,b)\) \(\Rightarrow \) Saddle point.

4. No information if \(f_{xx} f_{yy} - f_{xy}^2 = 0 \) at \((a,b)\)

Testing for Extreme Values:

If \(z = f(x,y) \) is continuous the extrem values of \(f \) may occur only at:

1. Boundary point of the Domain of \(f \).
2. Interior point of the Domain of \(f \) where
 \(f_x = f_y = 0 \).

PROBLEMS

1. Find the absolute max. and min. value of \(f(x,y) = 2 + 2x + 2y - x^2 - y^2 \) on the triangular plate in the first quadrant bounded by \(x = 0, y = 0 \)
 \(y = 9 - x \).