Modern Algebra

Chapter one: Group theory

Groups and subgroups
Some important groups
Lagrange theorem
The center
Homomorphisms
The isomorphism theorems.

Chapter two: Ring theory
Rings
Integral domain
Subring
Kinds of rings
Field

Chapter three: p-group and Sylow theorems
p-group
Sylow first theorem.
Sylow second theorem.
Sylow third theorem.
Modern Algebra
Chapter One
Group theory
Groups and subgroups

Definition: A binary operation \(*\) on a set is a rule that assigns to each ordered pair of elements of the set some element of the set.

Example 1: On \(\mathbb{Z}^+\), define a binary operation \(*\) by \(a*b\) equals the smaller of \(a\) and \(b\) or the common value if \(a=b\). Thus \(2*11=2\)
\[3*3=3\]

Example 2: On \(\mathbb{Z}^+\), define a binary operation \(*\) by \(a*b\) equals \(a+b\) thus \(4*7=11\).

Definition: A binary operation \(*\) on a set \(S\) is commutative if and only if \(a*b=b*a\) for all \(a,b\in S\).

Definition: A binary operation \(*\) is associative if and only if \((a*b)*c = a*(b*c)\) for all \(a,b,c\in S\).
Definition: If G is a non-empty set and $*$ is an associated binary operation then $(G,*)$ is called a semi-group.

Definitions: A Group $(G,*)$ is a set G together with a binary operation $*$ on G which satisfied the following conditions:

1. G is closed under the operation $*$.
2. The binary operation $*$ is associative.
3. There is an element e in G such that $e*x = x*e = x$ for all $x \in G$.

(This element e is an identity element for $*$ on G).
4. For each a in G, there is an element b in G with the property that $a*b = b*a = e$.

(The element b is an inverse of a with respect to $*$) and denoted by a^{-1}.

If $a*b = b*a \ \forall a,b \in G$ then G is called a commutative group or a abelian group.

Examples: The set \mathbb{Z} with operation $+$ is a group. All condition of the definition are satisfied. The group is abelian.

Examples: The set \mathbb{Z}^* with operation multiplication is not a group. There is an identity 1, but no inverse of 3.
Theorem: If \(G \) is a group with binary operation \(\ast \), then the left and right cancellation laws hold in \(G \), that is, \(a \ast b = a \ast c \) implies \(b = c \), and \(b \ast a = c \ast a \) implies \(b = c \) for \(a, b, c \in G \).

Proof: Suppose \(a \ast b = a \ast c \)

\[\Rightarrow \text{there exist } a^{-1} \text{ such that} \]

\[a^{-1} \ast (a \ast b) = a^{-1} \ast (a \ast c) \]

\[(a^{-1} \ast a) \ast b = (a^{-1} \ast a) \ast c \]

\[\Rightarrow e \ast b = e \ast c \]

\[\Rightarrow b = c \]

Similarly, from \(b \ast a = c \ast a \Rightarrow b = c \) by multiplication by \(a^{-1} \).

Note: The group \((G, \ast) \) is abelian if \((a \ast b)^{-1} = a^{-1} \ast b^{-1} \)

Note: If \((G, \ast) \) is a group s.t \(a \ast e = e \forall a \in G \) then \(G \) is abelian.

Definition: A group \((G, \ast) \) is called a finite group if \(G \) contains a finite number of elements.

Definition: A group \((G, \ast) \) is called an infinite group if \(G \) contains an infinite number of elements.

The number of elements of \(G \) is called the order of \(G \) denoted by \(|G| \) or \(o(G) \).
Theorem: In a group G with operation $*$, there is only one identity e such that $e * x = x * e = x$.

For all $x \in G$, for each $a \in G$, there is only one element a^{-1} such that $a^{-1} * a = a * a^{-1} = e$

i.e., the identity and inverses are unique in a group.

Proof: Suppose $e * x = x * e = x$ and also $e_1 * x = x * e_1 = x \forall x \in G$

Now let e be the identity, $e * e_1 = e_1 * e = e_1$

let e_1 be the identity, $e * e_1 = e_1 * e = e$

Thus $e_1 = e * e_1 = e$

and the identity of a group is unique.

Now suppose $a^{-1} * a = a * a^{-1} = e$ and $a^{-1} * a = a * a^{-1} = e$ then $a * a^{-1} = a * a^{-1} = e$

by the cancellation law

$a^{-1} = a^{-1}$

so the inverse of a in a group is unique

Subgroups

Definition: Let $(G, *)$ be a group and H be a non-empty set. The pair $(H, *)$ is called a subgroup iff $(H, *)$ is a group itself
denoted by $(H, *) \leq (G, *)$

Example: $(\mathbb{Z}, +) \leq (\mathbb{R}, +)$
Theorem: Let \((G, \cdot)\) be a group and \(H\) a non-empty set then \((H, \cdot')\) is called a subgroup if \(a \cdot b^{-1} \in H, \forall a, b \in H\).

Proof:
\[\forall a, b \in H \quad \text{since } H \text{ is a subgroup}
\]
Thus it is a group then \(b^{-1} \in H\) and then \(a \cdot b^{-1} \in H\) (closed)
\[\Leftarrow \quad \text{since } H \neq \emptyset \text{ then there exist at least an element}
\quad \text{say } a \in H.
\]
From above condition \(e = a \cdot a^{-1} \in H \rightarrow 1\)

For each \(b \in H \rightarrow b^{-1} = e^{-1} \cdot b^{-1} \in H \rightarrow 2\)
\(\forall a, b \in H, a \in H, b^{-1} \in H\) then \(a \cdot b^{-1} \in H \rightarrow 3\)
\(\Rightarrow H\) is a group.

Proposition: The intersection of any family of subgroups of any group is again a subgroup.

Proof:
\(\text{let } (G, \cdot) \text{ be a group}
\)
\(\text{let } \{ H_i | i \in I \} \text{ be a family of subgroups then}
\)
\[H_i = \{ H_0, H_2, H_3, \ldots \}
\]
\(\bigcap H_i \text{ is a subgroup } \iff a \cdot b^{-1} \in \bigcap H_i, \forall a, b \in H_i
\)
\(\text{let } a \in H_i, \forall i \quad \Rightarrow \quad a \cdot b^{-1} \in \bigcap H_i
\)
\(\text{let } b^{-1} \in H_i, \forall i \quad \Rightarrow \quad a \cdot b^{-1} \in \bigcap H_i
\)
\[a \cdot b^{-1} \in H_i, \forall i \quad \text{(because } H_1, H_2, \ldots \text{ are subgroups)}
\]
\[\Rightarrow a \cdot b^{-1} \in \bigcap H_i
\]
\[\Rightarrow \bigcap H_i \text{ is a subgroup.}\]