2.1 Partial differential equations

Definition: Any equation of the form

\[F \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \ldots, \frac{\partial^2 u}{\partial x \partial y}, \ldots \right) = 0 \]

is called partial differential equation.

Definition: The order of a partial differential equations is the highest order occurring in the equation.

- \[\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial u}{\partial t} \] second degree in two variable
- \[(\frac{\partial u}{\partial x})^3 + \frac{\partial u}{\partial t} = 0 \] first order in two variable
- \[x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + \frac{\partial u}{\partial t} = 0 \] first order in three variable

Definition: The equation of the form \(F(u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \ldots) = 0 \) is called partial differential equation of first order.

Note: If \(p = \frac{\partial u}{\partial x}, q = \frac{\partial u}{\partial y} \) then the P.D.E can be written as
\[f(x, y, t, p, q) = 0 \]

2.2 Linear equation of the first order

Definition: The equation of the form - \(Pu + Qq = R \)

where \(P, Q \) and \(R \) are given function of \(x, y, t \) (which do not involve \(P \) or \(q \)) is called linear equation of the first order (of Lagrange equation).

In general

Linear P.D.E of first order in \(n \) independent variable
\[x_1 P_1 + x_2 P_2 + \ldots + x_n P_n = 0 \]

when \(x, x_1, \ldots, x_n \) - 1, \(V \), \(P_1, P_2, \ldots, P_n \) - 1
variable \(x_1, x_2, \ldots, x_n \) and dependent variable \(f \) is
\[
\frac{\partial f}{\partial x_1} = P_i \quad (i = 1, 2, \ldots, n)
\]

Example

\[
\frac{\partial^2 f}{\partial x^2} + y \frac{\partial^2 f}{\partial y^2} = 2^2 + x^2
\]

L. P. D. E. of first order.

\[
\frac{\partial f}{\partial x} = 2^2 + x^2
\]

is not L. P. D. E.

Theorem

The general solution of the L. P. D. E \(P \frac{\partial u}{\partial x} + Q \frac{\partial u}{\partial y} = R \)

is \(F(u,v) = 0 \) where \(F \) is an arbitrary function and \(u(x,y) = c_1 \) and \(v(x,y) = c_2 \) form a solution of the equation.

Example

\[
\frac{dx}{x} = \frac{dy}{y} = \frac{dt}{(x+y)^2}
\]

Find the general solution of D.E.

\[
x^2 \frac{\partial^2 z}{\partial x^2} + y^2 \frac{\partial^2 z}{\partial y^2} = (x+y)^2
\]

Solution

\[
\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dt}{(x+y)^2}
\]

\[
\frac{dx}{x^2} - \frac{dy}{y^2} = \frac{dt}{(x+y)^2} \Rightarrow \frac{1}{x} - \frac{1}{y} = c_1 \Rightarrow \frac{x - y}{xy} = c_1
\]

\[
\frac{dx}{x^2} - \frac{dy}{y^2} = \frac{dt}{(x-y)^2} \Rightarrow \frac{dx}{x} - \frac{dy}{y} = \frac{dt}{(x-y)^2}
\]

\[
\Rightarrow \ln(x - y) = \ln(y) + c \Rightarrow \ln\left(\frac{x - y}{y}\right) = c
\]

\[
\Rightarrow \frac{x - y}{y} = c_2
\]

From \(1 \) & \(2 \) \(\frac{x}{y} = c_3 \)

The solution

1) \(F\left(\frac{xy}{c}, \frac{x - y}{c}\right) = 0 \)

Example

Solve \((x^2 - y^2 - z^2) \frac{\partial z}{\partial x} + 2xy \frac{\partial z}{\partial y} = 2x \frac{\partial z}{\partial x} \)

Solution

\[
\frac{dx}{x^2 - y^2 - z^2} = \frac{dy}{2xy} = \frac{dz}{2x^2}
\]

\[
\frac{dz}{2x^2} = \frac{dz}{2x^2} = 0 \frac{dx}{y} = \frac{dz}{x^2}
\]
Fourier Transform

Definition:
The Fourier transform of \(f(t) \) is defined as:
\[
F(p) = \mathcal{F}[f(t)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-ipt} \, dt
\]

Definition:
The inverse Fourier transform of \(F(p) \) is defined as:
\[
f(t) = \mathcal{F}^{-1}[F(p)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(p) e^{ipt} \, dp
\]

Example:
Find Fourier transform of \(f(t) \) if:
\[
f(t) = \begin{cases}
1 - t^2 & \text{if } |t| < 1 \\
0 & \text{if } |t| \geq 1
\end{cases}
\]

Then prove that \(\int_{0}^{\infty} \left(\frac{\sin p - p \cos p}{p^3} \right) \cos \frac{p}{p^2} \, dp = \frac{3\pi}{75}\).

Solution:
\[
F(p) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-ipt} \, dt = \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} (1 - t^2) e^{-ipt} \, dt
\]

\[
= \frac{1}{\sqrt{2\pi}} \left[\int_{-1}^{1} (1 - t^2) e^{-ipt} \, dt \right]
\]

\[
= \frac{1}{\sqrt{2\pi}} \left[\int_{-1}^{1} 1 e^{-ipt} \, dt - \int_{-1}^{1} t^2 e^{-ipt} \, dt \right]
\]

\[
= \frac{1}{\sqrt{2\pi}} \left[\frac{i}{p} e^{-ip} - \frac{2}{p^2} e^{-ip} + \frac{2}{p^3} e^{-ip} \right]
\]

\[
= \frac{1}{\sqrt{2\pi}} \left[\frac{4}{p^2} e^{ip} - \frac{4}{p^3} e^{-ip} \right]
\]

\[
= 2\sqrt{\frac{2}{\pi}} \left[\frac{\sin p - p \cos p}{p^3} \right]
\]

From inverse Fourier transform of \(F(p) \) we have:
\[
f(t) = \mathcal{F}^{-1}[F(p)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} 2\sqrt{\frac{2}{\pi}} \left[\frac{\sin p - p \cos p}{p^3} \right] e^{ipt} \, dp
\]

\[
= \begin{cases}
1 - t^2 & \text{if } |t| < 1 \\
0 & \text{if } |t| \geq 1
\end{cases}
\]
\[e^{-\frac{t}{2}} \sum_{n=0}^{\infty} \left(\sin^2 \frac{\pi n}{N} \right) e^{-\frac{t^2}{4}} \]

Since the function in second integral is odd, then it value is zero.

\[\frac{4}{\pi} \int_{0}^{\infty} \frac{\sin \frac{\pi p}{N} \cos \frac{\pi p t}{N}}{\rho^3} \cos t p \cos \rho p \, dp = \begin{cases} 0 & \text{if } t < 1 \\ t - t^2 & \text{if } t > 1 \end{cases} \]

If \(t = \frac{1}{2} \),

\[\frac{4}{\pi} \int_{0}^{\infty} \frac{\sin \frac{\pi p}{N} \cos \frac{\pi p t}{N}}{\rho^3} \cos \frac{t}{2} \, dp = \frac{3}{16} \]

\[\int_{0}^{\infty} \frac{\sin \frac{\pi p}{N} \cos \frac{\pi p t}{N}}{\rho^3} \cos \frac{t}{2} \, dp = \frac{3}{16} \]

Fourier Cosine Transform

Suppose \(f(t) \) is an even function \((i.e. f(-t) = f(t))\). Then Fourier transform of \(f(t) \) is:

\[\mathcal{F}[f(t)] = F(p) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-ipt} \, dt \]

\[= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(t) e^{-ipt} \, dt + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} f(t) e^{-ipt} \, dt \]

Put \(t = -T \) in first integral:

\[\mathcal{F}[f(t)] = -\frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(-T) e^{ipt} \, dT + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} f(T) e^{ipt} \, dT \]

\[= -\frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(T) e^{ipt} \, dT + \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(T) e^{-ipt} \, dT \]

\[= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(T) [e^{ipt} + e^{-ipt}] \, dT \]

So Fourier transform to an even function:

\[\mathcal{F}[f(t)] = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(t) \cos pt \, dt \]

\[\mathcal{F}[f(t)] = \sqrt{\frac{\pi}{2}} \int_{0}^{\infty} f(t) \cos pt \, dt \]
Recall that a PDE is called homogeneous if all the partial deriva-tions have the same order.

\[\begin{align*}
\frac{\partial^2 z}{\partial x \partial y} - x \frac{\partial^2 z}{\partial x^2} &= 0 \\
x^2 \frac{\partial^2 z}{\partial x^2} + 5xy \frac{\partial^2 z}{\partial x \partial y} - \frac{\partial^2 z}{\partial y^2} &= x^2 + y^2 \\
x^2 \frac{\partial^2 z}{\partial y^2} + 5xy \frac{\partial^2 z}{\partial y \partial x} + \frac{\partial z}{\partial x} &= x^2
\end{align*} \]

are homogeneous.

\[\begin{align*}
\frac{\partial^2 z}{\partial x^2} + xz &= y \\
\frac{\partial^2 z}{\partial y^2} + xz &= \frac{3z}{x^2}
\end{align*} \]

are not homogeneous.

In this chapter we find the solution of non-homogeneous.

\[f(Dx, Dy) \neq f(x, y) \]

this solution contains two parts:

1. General solution (Z1) of the equation \(f(Dx, Dy) Z = 0 \)
2. Special solution (Z2) which uses the same formulas as the method in the previous chapter.

First case: PDE with constant coefficients.

1. When \(f(Dx, Dy) = aD_x + bD_y + c \)

The solution of \((aD_x + bD_y + c) Z = 0\) is \(Z = e^{b} + (ax - bx)\)

When \(a, b, c \) are constants.

\[\begin{align*}
\text{Ex} & \quad (2D_x - D_y + 3) Z = 0 \\
a &= 2 \\ b &= 1 \\ c &= 3 \\
Z_1 &= e^{2y} + (2x + x)
\end{align*} \]

\[\begin{align*}
\text{Ex} & \quad (D_x - 3D_y + 2) Z = 0 \\
a &= 1 \\ b &= -3 \\ c &= 2 \\
Z_1 &= e^{\frac{3y}{2}} + (y + 3x)
\end{align*} \]

\[\begin{align*}
\text{Ex} & \quad (D_y + 2) Z = 0 \\
a &= 0 \\ b &= 1 \\ c &= 2 \\
Z_1 &= -e^{2y} + (x)
\end{align*} \]
The solution of \((aD_x + bD_y + c)^k z = 0\) is:

\[z = e^{-\frac{y}{k}} \left[\phi_1(ay-bx) + x\phi_2(ay-bx) + x^2\phi_3(ay-bx) + \ldots + x^{k-1}\phi_k(ay-bx) \right] \]

where \(\phi_1, \phi_2, \ldots, \phi_k\) are arbitrary functions.

Example:

\[(D_x - 2D_y + 0) z = 0 \]

\(a = 1, b = -2, c = 1, k = 4\)

\[z_1 = e^{\frac{y}{4}} \left[\phi_1(y + 2x) + x\phi_2(y + 2x) + x^2\phi_3(y + 2x) + x^3\phi_4(y + 2x) \right] \]

Example:

\[(D_x + 4D_y + 5) z = 0 \]

\(a = 3, b = 4, c = 5, k = 3\)

\[z_1 = e^{\frac{y}{3}} \left[\phi_1(3y-4x) + x\phi_2(3y-4x) + x^2\phi_3(3y-4x) \right] \]

Example:

\[(2D_x - D_y + 1)^2 (D_x + 3D_y + 4) z = 0 \]

\(k = 2, a = 2, b = -1, c = 4\)

\[z_1 = e^{\frac{y}{2}} \left[\phi_1(2y + x) + x\phi_2(2y + x) \right] + e^{\frac{y}{2}} \left[\phi_3(y - 3x) \right] \]

Example:

\[(2D_x - D_y + 6)(D_x - 5D_y + 8)^2 z = 0 \]

\(k = 2, a = 2, b = -5, c = 8\)

\[z = e^{6y} \left[\phi_1(2y + x) \right] + e^{6y} \left[\phi_2(y + 5x) + x\phi_3(y + 5x) \right] \]

\[(2D_x + 3D_y - 5)(D_y + 2D_y)(D_x + 5D_y) (D_y - 2) z = 0 \]

The text appears to be a continuation of a mathematics derivation or explanation, possibly related to differential equations or linear algebra, given the notation and operations used.
Formation of PDE

The PDE can be formed by one of:

1. elimination of arbitrary constant.
2. elimination of arbitrary function from a relation involving three or more variables.

Ex.
Derive a PDE (by eliminating the constant) from the equation \(z = \frac{x^2}{a^2} + \frac{y^2}{b^2} \)

Set:

Differentiate with respect to \(x \) and \(y \) we get:

\[
\begin{align*}
2 \frac{\partial z}{\partial x} &= \frac{2x}{a^2} \Rightarrow \frac{1}{a^2} &= \frac{1}{x} \frac{\partial z}{\partial x} = \frac{p}{x} \\
2 \frac{\partial z}{\partial y} &= \frac{2y}{b^2} \Rightarrow \frac{1}{b^2} &= \frac{1}{y} \frac{\partial z}{\partial y} = \frac{q}{y}
\end{align*}
\]

\[z = x p + y q \]

Note:

\[p = \frac{\partial z}{\partial x}, \quad q = \frac{\partial z}{\partial y}, \quad \frac{\partial^2 z}{\partial x \partial y} = s \quad \frac{\partial^2 z}{\partial y \partial x} = t \]

Ex.
Find a PDE from the relation \(z = a x^2 + b y^2 \)
where \(a \) and \(b \) are arbitrary constant.

Sol.

\[
\begin{align*}
\frac{\partial z}{\partial x} &= 2ax^1, \quad \frac{\partial^2 z}{\partial x \partial y} = \frac{1}{3} \frac{\partial z}{\partial x} \\
\frac{\partial z}{\partial y} &= 2by^1, \quad \frac{\partial^2 z}{\partial y \partial x} = \frac{1}{3} \frac{\partial z}{\partial y}
\end{align*}
\]

\[
\begin{align*}
\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} &= 3z
\end{align*}
\]

Ex.
Find a PDE from the relation \(z = a x^2 + b x y + c y^2 \)
where \(a, b, \) and \(c \) be \(n \) constant.

Sol.

\[
\begin{align*}
\frac{\partial z}{\partial x} &= 2ax + by \quad \frac{\partial^2 z}{\partial x^2} = 2a x + b y \\
\frac{\partial z}{\partial y} &= bx + 2cy \quad \frac{\partial^2 z}{\partial y^2} = 2c y \\
\frac{\partial^2 z}{\partial x \partial y} &= b x + 2c y \\
\end{align*}
\]

\[z = x y z, \quad x y z = z \]
Derive a PDE by eliminating the arbitrary fund

1) \(z = f(x^2 + y^2) \)
\[
\frac{\partial^2 z}{\partial x^2} = f''(x^2 + y^2) (2x) \quad \Rightarrow \quad \frac{\partial^2 z}{\partial x^2} = \lambda x \Rightarrow \nabla^2 z = \lambda z = 0
\]
\[
\frac{\partial^2 z}{\partial y^2} = f''(x^2 + y^2) (2y) \quad \Rightarrow \quad \frac{\partial^2 z}{\partial y^2} = \lambda y \Rightarrow \nabla^2 z = \lambda z = 0
\]

2) \(z = f(x + iy) + g(x - iy) \)
\[
\frac{\partial z}{\partial x} = f'(x + iy) + g'(x - iy) \]
\[
\frac{\partial^2 z}{\partial x^2} = f''(x + iy) + g''(x - iy) \]
\[
\frac{\partial z}{\partial y} = if'(x + iy) - ig'(x - iy) \]
\[
\frac{\partial^2 z}{\partial y^2} = -f''(x + iy) - g''(x - iy) \]
\[
\frac{\partial^2 z}{\partial x \partial y} = -i f'(x + iy) + i g'(x - iy) \]
\[
\frac{\partial^2 z}{\partial y \partial x} = -i g'(x - iy) + i f'(x + iy) \]
\[
\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0
\]

3) \(z = f(x) + g(y) \)
\[
\frac{\partial z}{\partial x} = f'(x) \quad \Rightarrow \quad \frac{\partial^2 z}{\partial x^2} = 0
\]
\[
\frac{\partial z}{\partial y} = g'(y) \quad \Rightarrow \quad \frac{\partial^2 z}{\partial y^2} = 0
\]

4) \(z = f(x + 2y) + g(x - 3y) \)
\[
\frac{\partial z}{\partial x} = f'(x + 2y) + g'(x - 3y) \]
\[
\frac{\partial^2 z}{\partial x^2} = f''(x + 2y) + g''(x - 3y) \]
\[
\frac{\partial z}{\partial y} = 3 f'(x + 2y) - 3 g'(x - 3y) \quad \Rightarrow \quad \frac{\partial^2 z}{\partial y^2} = 9 \frac{\partial^2 z}{\partial x^2} \]
\[
\frac{\partial^2 z}{\partial x \partial y} = 9 f'(x + 2y) + 9 g'(x - 3y) \]
\[
\frac{\partial z}{\partial x} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}
\]