Radio Isotopes it’s applications

Ch 1 :-
- Introduction – Isotopes
- Radio isotopes source
- Absorbing Doscand Units of Radiation
- Type of Radiation :-
 A – charged Nuclear Particles
 B – Electromagnetic Radiation
 C – Neutron
 D – characterization of neutron
- Type of Decay :-
 A – Decay
 B – β- Decay
 C – Proton Decay
 D – neutron Decay
 E – Positron Decay
- Pair Production
- Absorption of Gamma Rays
- Definitions :-
 1. masses
 2. charges
 3. Dimensions
 4. Density of nucleues
 5. Forces
- Cross section

Ch 2 :-
- Radioactivity
 - Natural Radioactivity
 1. The Radioactive Decay law
 2. Radioactive of sample
 3. Half life time and mean life time (t ½ ,T)
 - Artificially produced Radionuclides
 - Units of Radioactivity

Ch 3 :-
- Nuclear – Particles reactions with matter :-
 1. charged particles :- (1. Range of charged particles 2. Specific ionization and stopping power) .
2. Electrons (determination electron range from absorption curve).

3. Law of absorption

4. – ray (absorption - ray from matter)
 • Decay X and β with - ray
 • Stopping of neutrons (Fast neutrons, slow neutrons).

Ch 4: Nuclear detectors
- motion of electrons and ions in gas
- Gas-Filled counters
- Ionization chamber
- Ionization chamber for neutrons
- Proportional counters
- Geiger–Mueller counter
- Scintillation counter and applications
- The solid–state Counters

Ch 5:
- Principles of radiation and detection
- Principles Rules to uses Radio isotopes in industry
- Principles of Radiotracer Technique
- Fluid properties
- Flaw Rate Measurement
 1. Peak-to-Peak Method
 2. Dilution Method
 3. Total-count Method
 4. on–the-spot activation Method
 5. Activation analysis Method
- Flow pattern study
- Leakage Investigation
- Process characteristics
 1. Homogeneous Mixing
 2. Residence Time