Ch: 1 Ceramic Materiales
1-1 Definition and Principles

Ch: 2 Classification of Ceramic Materiales
2-1 Traditional Ceramic
 a- Kaolinites
 b- Montemornites

2-1-1 Crystal structures of traditional Ceramic
 a- Kaolinite crystal structures
 b- Montemornite crystal structures

2-2 Engineering Ceramic
 a- Oxide
 b- Carbide
 c- Chloride
 d- Nitride
 e- Magnetic ceramic
 f- Graphite

2-2-1 Selection and uses of Engineering Ceramic

2-2-2 Properties and behaviours

Ch: 3 Industrial Processing
 a- Raw materials
 b- Crushing
 c- Washing
 d- Sizing (seving)
 e- Size distribution and interfering
 f- Binding
 g- Forming
 h- Drying
 i- Firing

3-1 Forming Technology
 a- Slip Casting
 b- Injection
 c- Extrusion
 d- Cold pressing (uniaxial)
 e- Hot pressing
 f- HIP

Ch: 4 Draying Theories

Ch: 5 Sintering
 a- Theory of sintering
 b- Furnaces Types
Ceramic & composite materials

- Crystal Growth
- Solidification, Close packing and Densification

Ch6: Phase transformation
 - Inversion and Conversion
 - Mager phases and Internal phases properties and applications

Ch7: Physical test and Measurements
 - Metallic test
 - XRD, FRD
 - Thermal expansion (DTA)
 - Porosity measurement
 - Mechanical properties
 - Tensile, Compression
 - Bending, Hardness

Ch8: Composite Materials
 - Matrix Classifications
 - Reinforcement types applications

Ch9: Carbon materials Technology and applications