Weekly Hours: Theoretical: 2 UNITS: 5
Tutorial: 1
Experimental: 1

<table>
<thead>
<tr>
<th>week</th>
<th>Contents</th>
<th>المحتويات</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction to vector analysis</td>
<td>1. مقدمة عن تحليل المتجهات</td>
</tr>
<tr>
<td>2.</td>
<td>Vector</td>
<td>2. المتجهات</td>
</tr>
<tr>
<td>3.</td>
<td>=</td>
<td>3. القوى</td>
</tr>
<tr>
<td>4.</td>
<td>Forces</td>
<td>4. تحليل القوى</td>
</tr>
<tr>
<td>5.</td>
<td>Resolution of Forces</td>
<td>5. العزوم</td>
</tr>
<tr>
<td>6.</td>
<td>Moments</td>
<td>6. المزودبات</td>
</tr>
<tr>
<td>7.</td>
<td>Couples</td>
<td>7. المحصلة</td>
</tr>
<tr>
<td>8.</td>
<td>Resolution</td>
<td>8. المحصلة</td>
</tr>
<tr>
<td>9.</td>
<td>=</td>
<td>9. الاتزان</td>
</tr>
<tr>
<td>10.</td>
<td>Equilibrium</td>
<td>10. الاتزان</td>
</tr>
<tr>
<td>11.</td>
<td>=</td>
<td>11. الاتزان</td>
</tr>
<tr>
<td>12.</td>
<td>=</td>
<td>12. الاتزان</td>
</tr>
<tr>
<td>13.</td>
<td>Plane trusses</td>
<td>13. السارات المستوية</td>
</tr>
<tr>
<td>14.</td>
<td>Method of joints</td>
<td>14. طريقة العقد</td>
</tr>
<tr>
<td>15.</td>
<td>Method of section</td>
<td>15. طريقة المقطع</td>
</tr>
<tr>
<td>16.</td>
<td>Space trusses</td>
<td>16. السارات الفضائية</td>
</tr>
<tr>
<td>17.</td>
<td>Frames and machines</td>
<td>17. هيكل الآلات</td>
</tr>
<tr>
<td>18.</td>
<td>=</td>
<td>18. الاتزان</td>
</tr>
<tr>
<td>19.</td>
<td>=</td>
<td>19. الاتزان</td>
</tr>
<tr>
<td>20.</td>
<td>Friction</td>
<td>20. الاتزان</td>
</tr>
<tr>
<td>21.</td>
<td>Friction in wedges and screws</td>
<td>21. الاتزان في الأسس و السكاتاب</td>
</tr>
<tr>
<td>22.</td>
<td>Friction in belts</td>
<td>22. الاتزان في الأجزاء</td>
</tr>
<tr>
<td>23.</td>
<td>Friction in bearings</td>
<td>23. الاتزان في المحاصيل</td>
</tr>
<tr>
<td>24.</td>
<td>=</td>
<td>24. الاتزان</td>
</tr>
<tr>
<td>25.</td>
<td>Center of gravity and mass</td>
<td>25. مركز الثقل / مركز الكتلة</td>
</tr>
<tr>
<td>26.</td>
<td>Centroid</td>
<td>26. المركز الهندسي</td>
</tr>
<tr>
<td>27.</td>
<td>Moment of inertia of area</td>
<td>27. عزم القصور الذاتي</td>
</tr>
<tr>
<td>28.</td>
<td>=</td>
<td>28. الاتزان</td>
</tr>
<tr>
<td>29.</td>
<td>Parallel axis theorem</td>
<td>29. نظرية المحاور المتعارضة</td>
</tr>
<tr>
<td>30.</td>
<td>=</td>
<td>30. الاتزان</td>
</tr>
</tbody>
</table>
ART. 2/2 FORCE

Replace the two forces by a single equivalent force R and find the angle θ between R and the x-axis. Solve both geometrically and by using unit vectors i and j.

Geometric

Graphical: construct parallelogram & measure R & θ.

Trigonometric: Law of cosines

\[R^2 = 4^2 + 6^2 - 2(4)(6)\cos 80° \]
\[R = 6.61 \text{ kN} \]

\[R^2 = (6.61)^2 + 6^2 - 2(6.61)(6)\cos(θ - 30°) \]
\[θ - 30° = \cos^{-1} 0.8029 = 36.6°, \quad θ = 66.6° \]

Vector algebra

\[R_x = 6 \cos 30° - 4 \cos 50° = 2.63 \text{ kN} \]
\[R_y = 6 \sin 30° + 4 \sin 50° = 6.06 \text{ kN} \]
\[R = 2.63i + 6.06j \text{ kN}, \quad θ = \tan^{-1} \frac{6.06}{2.63} = 66.6° \]
ART. 2/3 RECTANGULAR COMPONENTS (2-D)

Force F in rectangular components is given by $F = -40\mathbf{i} + 60\mathbf{j}$ N.
Determine the non-rectangular components of F in the y- and h-directions.

Graphical solution:
Construct F then form parallelogram. Measure F_y and F_h.

Trigonometric solution:
\[
\alpha = \tan^{-1} \frac{40}{60} = 33.7^\circ, \quad F = \sqrt{(40)^2 + (60)^2} = 72.1 \text{ N}
\]
Law of sines \[
\frac{72.1}{\sin 30^\circ} = \frac{F_h}{\sin 33.7^\circ}, \quad F_h = 80.0 \text{ N}
\]
\[
\beta = 180 - 30 - 33.7 = 116.3^\circ
\]
\[
\frac{F_y}{\sin 116.3^\circ} = \frac{72.1}{\sin 30^\circ}, \quad F_y = 129.3 \text{ N}
\]
ART. 2/4 MOMENT (2-D)

Calculate the moment of the 400-N force about point O in five different ways.

From the geometry
\[a + 0.04 = 0.120 \tan 60^\circ \]
\[a = 0.168 \text{ m} \]
\[0.120 - b = 0.040 \tan 30^\circ \]
\[b = 0.0969 \text{ m} \]
\[d = b \cos 30^\circ \]
\[= 0.0839 \text{ m} \]

(I) \(M_0 = F_d = 400(0.0839) = 33.6 \text{ N.m} \)

(II) \(M_0 = 400(0.12 \sin 60^\circ - 0.04 \cos 60^\circ) = 33.6 \text{ N.m} \)

(III) \(M_0 = F_x b = 400 \sin 60^\circ (0.0969) = 33.6 \text{ N.m} \)

(IV) \(M_0 = F_y a = 400 \cos 60^\circ (0.168) = 33.6 \text{ N.m} \)

(V) \(M_0 = i x F = (0.04i + 0.12j) \times 400(i \sin 60^\circ + j \cos 60^\circ) \)
\[= 8k - 4.16k = -33.6k \text{ N.m} \]
ART. 2/5 COUPLÉ (2-D)

Replace the force and couple acting on the wrench by a single equivalent force \(F \) applied at \(D \). Determine \(b \).

Replace 60-N.m couple by an equivalent couple consisting of two 300-N forces a distance \(d \) apart placed to cancel the given force. Thus, resultant is \(F = 300 \text{ N} \) located at \(D \) where

\[
M_A = Fd; \quad 60 = 300d, \quad d = 0.2 \text{ m}
\]

\[
b = 0.2 / \cos 20^\circ = 0.213 \text{ m} \quad \text{or} \quad b = 21.3 \text{ mm}
\]
ART. 2/16 RESULTANTS (2-D)

Represent the resultant of the three forces and one couple by an equivalent force R at A and a couple M. Find M and the magnitude and direction of R.

\[R_x = \sum F_x = 2 \sin 30^\circ + 1.5 \]
\[= 2.5 \text{ kN} \]

\[R_y = \sum F_y = 2 \cos 30^\circ - 4 \]
\[= -2.27 \text{ kN} \]

\[R = \sqrt{R_x^2 + R_y^2} = \sqrt{2.5^2 + 2.27^2} = 3.38 \text{ kN} \]

\[M = \sum M_A = 1.5 + 4(2) - 2 \cos 30^\circ (2 + 1.5) - 1.5(1.5) \]
\[= 1.188 \text{ kN} \cdot \text{m CW} \]

\[\theta = \tan^{-1} \frac{2.27}{2.5} \]
\[= 42.2^\circ \]
ART. 217 RECTANGULAR COMPONENTS (3-D)

For $a = 3\, \text{m}$, $b = 6\, \text{m}$, $c = 2\, \text{m}$, $F = 10\, \text{kN}$, determine the magnitudes of the components of F along AC and AD and the projection of F along DC.

Choose x-y-z axes.

- $AB = \sqrt{3^2 + 6^2 + 2^2} = 7\, \text{m}$
- $AC = \sqrt{2^2 + 6^2} = 2\sqrt{10}\, \text{m}$
- $AD = \sqrt{2^2 + 3^2} = \sqrt{13}\, \text{m}$
- $DC = \sqrt{3^2 + 6^2} = 3\sqrt{5}\, \text{m}$

- $F_{AC} = F \cos \alpha = 10 \frac{2\sqrt{10}}{7} = 9.04\, \text{kN}$
- $F_{AD} = F \cos \beta = 10 \frac{\sqrt{13}}{7} = 5.15\, \text{kN}$

Let $\mathbf{n} = \text{unit vector along } DC = \frac{3}{3\sqrt{5}} \mathbf{i} + \frac{6}{3\sqrt{5}} \mathbf{j}$

- $F = 10 \left(\frac{-3}{7} \mathbf{i} + \frac{6}{7} \mathbf{j} + \frac{2}{7} \mathbf{k} \right) \, \text{kN}$
- $F_{DC} = F \cdot \mathbf{n} = \frac{10}{7} (-3 \mathbf{i} + 6 \mathbf{j} + 2 \mathbf{k}) \cdot \frac{1}{\sqrt{5}} (\mathbf{i} + 2 \mathbf{j})$
 - $= \frac{10}{7\sqrt{5}} (-3 + 12) = 5.75\, \text{kN}$
Determine the moment of the 500-N force \(F \) about the \(x \)-axis.

Scalar solution

\[
|F_x| = 500 \sin 30^\circ \cos 60^\circ = 125 \text{ N} \\
|F_y| = 500 \cos 30^\circ = 433 \text{ N} \\
|F_z| = 500 \sin 30^\circ \sin 60^\circ = 217 \text{ N}
\]

\[
M_x = -433 (0.3) + 217 (0.2) = -86.6 \text{ N} \cdot \text{m}
\]

Vector solution

\[
\mathbf{r}_A = 0.3 \mathbf{i} + 0.2 \mathbf{j} - 0.3 \mathbf{k} \text{ m}
\]

\[
\mathbf{M}_A = \mathbf{r}_A \times \mathbf{F} = \frac{0.3 \times (-433) - 0.2 \times 500 - 0.3 \times 125}{0.3 \times 0.2 - 0.2 \times (-0.3)} = -86.6 \text{ N} \cdot \text{m}
\]
Replace the two forces and couple by a wrench. Find the moment \(M \) of the wrench and the coordinates of point \(P \) in the y-z plane through which the force of the wrench passes.

\[
R = \Sigma F = 200\hat{i} + 150\hat{j} \text{ N}
\]

Assume positive wrench so direction cosines of \(M \) are those of \(R \) or 0.8, 0.6, 0.

\[
\Sigma M_p = 200(0.3-y)\hat{j} - 200(0.3-y)\hat{k} + 150\hat{i} + 150(0.2)\hat{k} - 30\hat{i}
= (-30 + 150z)\hat{i} + (60 - 200z)\hat{j} + (-30 + 200y)\hat{k} \text{ N•m}
\]

Equate direction cosines of \(\Sigma M_p \) & \(\Sigma F \) & get

\[
\begin{align*}
(-30 + 150z)/M &= 0.8 \\
(60 - 200z)/M &= 0.6 \\
(-30 + 200y)/M &= 0
\end{align*}
\]

Solve & get \(y = 0.15 \text{ m} \) or \(y = 150 \text{ mm} \)

\(z = 0.264 \text{ m} \) or \(z = 264 \text{ mm} \)

\(M = (-30 + 150(0.264))/0.8 = 12 \text{ N•m} \), \(M = 12(0.8\hat{i} + 0.6\hat{j}) \text{ N•m} \)
Determine the pull \(P \) on the rope exerted by the man to hold the crate in the position shown. Also find the tension \(T \) in the upper rope.

Solution (I) x-y axes

\[\Sigma F_x = 0 : \quad 0.866P - \frac{1.5}{5}T = 0 \]
\[\Sigma F_y = 0 : \quad -0.5P - 200(9.81) + 0.954T = 0 \]

Solve simultaneously and get

\[P = 871 \text{ N}, \quad T = 2513 \text{ N} \]

Solution (II) x'-y' axes

\[\Sigma F_{x'} = 0 : \quad P \cos(30^\circ + 17.45^\circ) - 200(9.81) \frac{1.5}{5} = 0 \]

\[P = 871 \text{ N} \]

\[\Sigma F_{y'} = 0 : \quad T - 871 \sin(30^\circ + 17.45^\circ) - 200(9.81) \cos 17.45^\circ = 0 \]

\[T = 2513 \text{ N} \]
The uniform 40-kg bar with small end rollers is supported by the horizontal and vertical surfaces and by wire AC. Calculate the tension T in the wire and the forces at A and B. Solve by using two moment equations and one force equation.

$$W = mg = 40(9.81) = 392 \text{ N}$$

$$\theta = \tan^{-1} \frac{1.5}{1} = 33.7^\circ$$

$$\sum M_A = 0: \quad 2B - 392 \left(\frac{1.5}{2}\right) = 0$$

$$B = 147.2 \text{ N}$$

$$\sum M_E = 0: \quad (T \cos 33.7^\circ)2 - 392 \left(\frac{1.5}{2}\right) = 0$$

$$T = 176.9 \text{ N}$$

$$\sum F_y = 0: \quad A + 176.9 \sin 33.7^\circ - 392 = 0$$

$$A = 294 \text{ N}$$
Member OBC and sheave C have a mass of 500 kg with mass center at G. Calculate the magnitude of the force supported by the pin at O. Collar A provides horizontal support only.

Replace force by force and couple at C.

\[\Sigma M_o = 0: \]
\[500(9.81)(1.5) - 2A + 3000(4.5 \cos 30^\circ + 3 \sin 30^\circ) + 1500 = 0 \]
\[A = 12524 \text{ N or } A = 12.52 \text{ kN} \]

\[\Sigma F_x = 0: \]
\[12.52 - 3 \sin 30^\circ - 0_x = 0, \quad 0_x = 11.02 \text{ kN} \]

\[\Sigma F_y = 0: \]
\[0_y - 500(9.81) - 3 \cos 30^\circ = 0, \quad 0_y = 7.50 \text{ kN} \]

\[O = \sqrt{(11.02)^2 + (7.50)^2} = 13.34 \text{ kN} \]
A high-voltage power line is suspended as shown. Tension in the line at the insulators is 3 kN. Calculate the tension T in link AD and the compression C in links AB and AC.

\[\Sigma F_x = 0: \quad P - 2(3) \sin 15^\circ = 0 \]
\[P = 1.553 \text{ kN} \]

\[AC = AD = \sqrt{2^2 + (1.5)^2} = 2.5 \text{ m} \]

\[\Sigma F_y = 0: \quad T \sin \theta - 1.553 = 0 \]
\[T = \frac{1.553}{1.5/2.5}, \quad T = 2.59 \text{ kN} \]

\[\Sigma F_y = 0: \quad 2C \cos \beta - 2.59 \cos \theta = 0 \]
\[C = \frac{2.59(2/2.5)}{2(2/2.5)}, \quad C = 1.29 \text{ kN} \]
Connections at A, B, C, D are ball & socket joints. Neglect weight of members. Find compression P in legs BD & CD and magnitude of force at A.

\[300 (9.81) (4/5) = 2354 \text{ N} \]
\[300 (9.81) (3/5) = 1766 \text{ N} \]
\[W = 300 (9.81) = 2943 \text{ N} \]

\[\theta = \tan^{-1} \frac{2.4}{1.2} = 63.4^\circ \]

\[2P \sin \theta = D \]
\[P = \frac{D}{2 \sin \theta} = \frac{\sqrt{5} D}{4} \]

\[\Sigma F_y = 0: A_y - 2354 = 0, \quad A_y = 2354 \text{ N} \]
\[\Sigma M_G = 0: 1.8A_z + 2354 (4.8) + 2943 (1.8) + 1766 (1.8) = 0, \]
\[\Sigma F_z = 0: 1570 + 4P/\sqrt{5} - 2943 - 1766 = 0, \quad P = 1755 \text{ N} \]

\[A = \sqrt{(2354)^2 + (1570)^2} = 2830 \text{ N} \]

[A\text{_z} = 1570 \text{ N}]
ART. 4/3 METHOD OF JOINTS

Determine the forces in members FG, EG, and GD for the simple truss.

By inspection of joint F, FG = EF = 0

Joint E

\[\theta = \tan^{-1} \frac{3}{4}, \quad \sin \theta = \frac{3}{5}, \quad \cos \theta = \frac{4}{5} \]

\[\beta = \tan^{-1} \frac{3}{16} = 10.62^\circ \]

4 kN \[\Sigma F_x = 0: \quad EG \left(\frac{4}{5}\right) - ED \cos 10.62^\circ = 0 \]

\[\Sigma F_y = 0: \quad EG \left(\frac{3}{5}\right) + ED \sin 10.62^\circ - 4 = 0 \]

Solve to obtain \(EG = 5.33 \text{ KN T} \)

Joint G

\[\Sigma F_y = 0: \quad GD - 5.33 \left(\frac{3}{5}\right) = 0 \]

\(GD = 3.20 \text{ KN C} \)
Determine the forces in members DI, DE, and EI for the simple truss.

\[\sum F_x = 0: \text{DI} \cos 45^\circ - 18 \cos 45^\circ = 0 \]

\[\text{DI} = 18 \text{ kN} \text{ C} \]

\[\sum F_y = 0: \text{DE} (3 \cos 45^\circ) - 18 (3) = 0 \]

\[\text{DE} = 25.5 \text{ kN C} \]

\[\sum F_z = 0: \text{EI} = 0 \]
Determine the forces in members AD, BD, CD, & ED of the space truss loaded and supported as shown. Verify the adequacy of internal stability.

No. of members \(m = 12 \); No. of joints \(j = 6 \) \((m + 6 = 18) = (3j = 18)\) so members are adequate in number and comprise rigid tetrahedrons.

Joint B: \(\Sigma F_z = 0 \) gives \(\frac{3}{5} F_{BD} - \frac{P}{\sqrt{2}} = 0 \), \(F_{BD} = \frac{5P}{3\sqrt{2}} \) (17)

All unknown forces taken (+) tension

Joint D:

\[
\begin{align*}
-F_{BD} &= F_{BD} \left(-\frac{4}{5}i - \frac{3}{5}k\right) = \frac{P}{3\sqrt{2}} \left(-4j - 3k\right) \\
-F_{CD} &= F_{CD} \left(-k\right) \\
F_{AD} &= F_{AD} \left(-\frac{i}{\sqrt{2}} - \frac{k}{\sqrt{2}}\right) = \frac{F_{AD}}{\sqrt{2}} \left(-i - k\right) \\
F_{ED} &= F_{ED} \left(\frac{j}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right) = \frac{F_{ED}}{\sqrt{2}} \left(i + j\right)
\end{align*}
\]

\(\Sigma F = 0 \) yields

\[
\begin{align*}
\{i\text{-terms:}\} &- F_{AD}/\sqrt{2} - F_{ED}/\sqrt{2} = 0 \\
\{j\text{-terms:}\} &-4P/(3\sqrt{2}) + F_{ED}/\sqrt{2} = 0 \\
\{k\text{-terms:}\} &-P/\sqrt{2} - F_{CD} - F_{AD}/\sqrt{2} = 0
\end{align*}
\]

Solve & get

\[
F_{AD} = -\frac{4P}{3} \quad (c) \quad F_{CD} = \frac{P}{3\sqrt{2}} \quad (7) \quad F_{ED} = \frac{4P}{3} \quad (T)
\]
Determine the total force (shear) supported by the pin at B for the loaded frame.

From FBD of entire frame
$$\Sigma M_A = 0:\]
C_x \left(0.5\sqrt{2}\right) - 50(9.81)\left(\frac{1}{\sqrt{2}} + 0.15\right) = 0
C_x = 595 \text{ N}
$$
$$\Sigma F_x = 0: A_x - 595 = 0, A_x = 595 \text{ N}
$$

From FBD of member BC
$$\Sigma M_B = 0:\]
595\left(0.5\right) - 50(9.81)(0.15) - C_y \left(0.5\sqrt{2}\right) = 0
C_y = 386 \text{ N}
$$
$$\Sigma F_x = 0: B_x + 50(9.81)/\sqrt{2} - 595 = 0, B_x = 248 \text{ N}
$$
$$\Sigma F_y = 0: 386 + 50(9.81)/\sqrt{2} - B_y = 0, B_y = 733 \text{ N}
$$
Total force (shear) $B = \sqrt{(248)^2 + (733)^2} = 774 \text{ N}$
Determine the magnitude of the force supported by the pin at C.

Entire frame

\[\Sigma M_A = 0: \quad 0.4E - 0.6(600) = 0 \]
\[E = 900 \text{ N} \]

\[\Sigma F_x = 0: \quad A_x = 600 \text{ N} \]

\[\Sigma F_y = 0: \quad A_y = 900 \text{ N} \]

Link CD \(\Sigma M_D = 0: \)

\[C_x(0.2) - 600(0.4) = 0, \quad C_x = 1200 \text{ N} \]

Link ABC \(\Sigma M_B = 0: \)

\[C_y(0.2) - 600(0.2) - 1200(0.2) = 0 \]
\[C_y = 1800 \text{ N} \]
\[C = \sqrt{(1200)^2 + (1800)^2} = 2160 \text{ N} \]
Determine the x-coordinate of the centroid of the shaded area.

\[dA = (x_2 - x_1) dy \]
\[= (\sqrt{by} - y/2) dy \]
\[A = \int_0^b (\sqrt{by} - y/2) dy \]
\[= \left[\frac{2}{3} \sqrt{b} y^{3/2} - \frac{y^2}{4} \right]_0^b \]
\[= \frac{5}{12} b^2 \]

\[\bar{x} = \frac{\int x_c dA}{A} = \frac{5 b^3/24}{5 b^2/12} = \frac{b}{2} \]
Determine the z-coordinate of the mass center of the solid obtained by revolving the quarter-circular area about the z-axis.

Differential element is a washer of radii r and a and thickness dz with volume

$$dV = \pi (r^2 - a^2)dz = \pi (a^2 - z^2 + 2a\sqrt{a^2 - z^2})dz$$

$$\int z dV = \int_0^a \pi (a^2 - z^3 + 2az\sqrt{a^2-z^2})dz$$

$$= \pi \left[\frac{a^2z^2}{2} - \frac{z^4}{4} + \frac{2a}{3} \sqrt{(a^2-z^2)^3} \right]_0^a = \frac{11}{12} \pi a^4$$

$$\int dV = \int_0^a \pi (a^2 - z^2 + 2a\sqrt{a^2-z^2})dz$$

$$= \pi \left[\frac{a^2z^3}{3} + a(z\sqrt{a^2-z^2} + a^2\sin^{-1}\frac{z}{a}) \right]_0^a = \pi a^3 \left(\frac{2}{3} + \frac{\pi}{2} \right)$$

$$\bar{z} = \frac{\int z dV}{\int dV} = \frac{(11/12)\pi a^4}{\pi a^3 (2/3 + \pi/2)}$$

$$\bar{z} = \frac{11a}{2 (4 + 3\pi)} = 0.410a$$
The semicircular and straight bars are made from stock with a mass of 7.5 kg per meter of length and are welded to the triangular plate made from material with a mass of 100 kg per square meter of area. Calculate the coordinates of the mass center of the assembly.

<table>
<thead>
<tr>
<th>Part</th>
<th>m</th>
<th>(\bar{x})</th>
<th>(\bar{y})</th>
<th>(m\bar{x})</th>
<th>(m\bar{y})</th>
</tr>
</thead>
<tbody>
<tr>
<td>circular bar</td>
<td>2.25(\pi)</td>
<td>0</td>
<td>600/(\pi)</td>
<td>0</td>
<td>1350</td>
</tr>
<tr>
<td>Brace</td>
<td>5.54</td>
<td>338</td>
<td>150</td>
<td>1870</td>
<td>831</td>
</tr>
<tr>
<td>Base</td>
<td>20.25</td>
<td>225</td>
<td>0</td>
<td>4556</td>
<td>2181</td>
</tr>
<tr>
<td>sums</td>
<td>32.86</td>
<td></td>
<td></td>
<td>6426</td>
<td>2181</td>
</tr>
</tbody>
</table>

\[
\bar{x} = \frac{\Sigma m\bar{x}}{\Sigma m} = \frac{6426}{32.86} = 195.6 \text{ mm}
\]

\[
\bar{y} = \frac{\Sigma m\bar{y}}{\Sigma m} = \frac{2181}{32.86} = 66.4 \text{ mm}
\]
Uniform 60-kg bar AB is subjected to force P. Smooth guides at B. At A, $\mu_s = 0.8$.

(a) If $P = 400 \text{ N}$, find friction force at A.

(b) Find P required to cause slippage at A.

\[
W = mg = 60(9.81) = 589 \text{ N}
\]

(a) $P = 400 \text{ N}$. Assume equil.

\[
\Sigma F_y = 0: \quad N_1 - 589 = 0, \quad N_1 = 589 \text{ N}
\]

\[
\Sigma M_{C} = 0: \quad 400 \frac{L}{2} \sin 60^\circ + 589 \frac{L}{2} \cos 60^\circ - F \frac{L}{2} \sin 60^\circ = 0
\]

\[
F = 370 \text{ N} < \left[\mu_s N_1 = 0.8(589) = 471 \text{ N} \right]
\]

so assumption is valid

(b) $F = \mu_s N_1 = 471 \text{ N}$

\[
\Sigma M_C = 0: \quad P \frac{L}{2} \sin 60^\circ + 589 \frac{L}{2} \cos 60^\circ - 471 (\frac{L}{2} \sin 60^\circ) = 0
\]

\[
P = 602 \text{ N}
\]
The hubs of the uniform 50-kg wheel rest on inclined rails. If support at A is removed, determine the friction force acting on the wheel if $\mu_s = 0.50$, $\mu_k = 0.40$. What would happen if $\mu_s = 0.30$ & $\mu_k = 0.25$?

First, assume equilibrium.

$\Sigma M_A = 0$:

$T(500 \cos 30^\circ) - 50(9.81)(250 \sin 30^\circ) = 0$

$T = 85.6 \text{ N}$

$\Sigma F_y = 0$:

$N - 50(9.81) \cos 30^\circ - 85.6 \sin 30^\circ = 0$

$N = 468 \text{ N}$

$\Sigma F_x = 0$:

$-F - 85.6 \cos 30^\circ + 50(9.81) \sin 30^\circ = 0$, $F = 171 \text{ N}$

Since ($F_{\text{needed}} = 171 \text{ N} < (F_{\text{max}} = \mu_s N = 0.50(468) = 234 \text{ N})$, equilibrium assumption is valid & $F = 171 \text{ N}$

If $\mu_s = 0.30$, $F_{\text{max}} = 0.30(468) = 140.4 \text{ N} < 171 \text{ N}$

so wheel will slip. But $F \neq 0.25(468) \text{ N}$ since $N \neq 468 \text{ N}$ under accelerating conditions.
Each screw of the jack has a mean diameter of 21 mm and a lead of 8 mm, one a right-hand and the other a left-hand thread. For $\theta = 30^\circ$ determine (a) the torque M required to raise the load $P = 7.5$ kN and (b) the torque M' required to lower the load. The coefficient of friction is $\mu = 0.20$.

For equilibrium

$W = 2C \cos 30^\circ$, $P = 2C \sin 30^\circ$

so $W = P \csc 30^\circ = 7.5 \sqrt{3} = 12.99$ kN

Friction angle $\phi = \tan^{-1} 0.20 = 11.31^\circ$

Helix angle $\alpha = \tan^{-1} \left(\frac{L}{2\pi r} \right) = \tan^{-1} \left(\frac{8}{2\pi(21/2)} \right) = 6.91^\circ$

$M = 2Wr \tan (\phi + \alpha) = 2(12.99)(21/2) \tan (11.31^\circ + 6.91^\circ)$

(a) $M = 89.8$ kN-mm or $M = 89.8$ N-m

$M' = 2Wr \tan (\phi - \alpha) = 2(12.99)(21/2) \tan (11.31^\circ - 6.91^\circ)$

(b) $M' = 21.0$ kN-mm or $M' = 21.0$ N-m
The coefficient of kinetic friction between the 30-mm-diameter pin and the pulley is 0.25. Calculate the tension \(T \) required to (a) raise the load and (b) lower the load at a constant speed. Neglect the mass of the pulley.

\[
\phi = \tan^{-1} 0.25 = 14.04^\circ
\]

\[
\tau = r \sin \phi = 0.015 \sin 14.04^\circ = 0.00364 \text{ m}
\]

\[
L = 500(9.81) = 4905 \text{ N}
\]

(a) To raise load: \(\Sigma M_B = 0 \)

\[
0.25T - 4905(0.125 + 0.00364) = 0
\]

\[
T = 2524 \text{ N or } T = 2.52 \text{ kN}
\]

(b) To lower load: \(\Sigma M_B = 0 \)

\[
0.25T - 4905(0.125 - 0.00364) = 0
\]

\[
T = 2381 \text{ N or } T = 2.38 \text{ kN}
\]
Calculate the force P on the handle of the differential band brake that will prevent the flywheel from turning on its shaft to which the torque $M = 150 \text{ N}\cdot\text{m}$ is applied. The coefficient of friction between the band and the flywheel is $\mu = 0.40$.

Diagram

1. T_1: Force on the band
2. T_2: Force on the flywheel
3. Moment arm $r = 150 \text{ mm}$
4. $\alpha = 30^\circ$

Equations

1. Band: $T_2 = T_1 e^{\mu \beta}$
 \[T_2 = T_1 e^{0.40 \frac{7\pi}{6}} = 4.33 T_1 \quad \cdots (1) \]

2. Flywheel: $\Sigma M = 0$; $150 + (T_1 - T_2)(0.150) = 0$
 \[T_2 - T_1 = 1000 \text{ N} \quad \cdots (2) \]

3. Handle: $\Sigma M = 0$; $0.150 T_2 - (T_1 \sin 30^\circ)(0.075) - 0.450 P = 0$

Solve (1) & (2) to get $T_1 = 300 \text{ N}$, $T_2 = 1300 \text{ N}$

Solve for P and get $P = 408 \text{ N}$
Calculate the moment of inertia of the shaded area about the x- and y-axes. Also find the radius of gyration k_x.

For rectangular area about its base $I = \frac{1}{3}bh^3$ so
\[
dI_x = \frac{1}{3}y^3\,dx = \frac{1}{3}(90x/4)^{3/2}\,dx
\]
\[
I_x = \frac{9}{8}(10)^{3/2}\int_0^{40} x^{3/2}\,dx
\]
\[
= \frac{9}{8}(10)^{3/2}\left[\frac{2}{5}x^{5/2} \right]_0^{40} = \frac{9(31)}{80} \frac{40^5}{5} = 13.95(10)^4 \text{ mm}^4
\]

Area $A = \int y\,dx = \frac{3}{2} \sqrt{10} \int_0^{40} x^{1/2}\,dx = \frac{3}{2} \sqrt{10} \frac{2}{3} x^{3/2} |_0^{40} = 700 \text{ mm}^2$

$k_x = \sqrt{I_x/A} = \sqrt{13.95(10)^4/700} = 14.12 \text{ mm}$

$I_y = \int x^2\,dA = \int_0^{40} y\,dx = \frac{3}{2} \sqrt{10} \int_0^{40} x^{5/2}\,dx
\]
\[
= \frac{3}{2} \sqrt{10} \left[\frac{2}{7}x^{7/2} \right]_0^{40} = 54.43 (10)^4 \text{ mm}^4$
Calculate the moment of inertia of the rectangular area about the x-axis and find the polar moment of inertia about point O.

For rectangular area recall

\[I = \frac{1}{12}bh^3 - \frac{h^2}{12}b \]

\[I_x = \bar{I}_x + Ad_x^2 \]
\[= \frac{1}{12} (90)(60)^3 + (90)(60)(30+30)^2 = 21.06 \times 10^6 \text{ mm}^4 \]

\[I_y = \bar{I}_y + Ad_y^2 \]
\[= \frac{1}{12} (60)(90)^3 + (90)(60)(45)^2 = 14.58 \times 10^6 \text{ mm}^4 \]

\[I = I_x + I_y = 21.06 \times 10^6 + 14.58 \times 10^6 = 35.64 \times 10^6 \text{ mm}^4 \]
Compute the moment of inertia about the x-axis and the polar radius of gyration about O for the area shown.

For quarter circular area $A = \frac{\pi}{4} (40)^2 = 1257 \text{ mm}^2$

$I_x = I_y = \frac{1}{4} \left(\frac{\pi}{4} r^4 \right) = \frac{\pi}{16} (40)^4 = 503 \times 10^3 \text{ mm}^4$

$I_z = I_x + I_y = 2 \times (503) \times 10^3 = 1005 \times 10^3 \text{ mm}^4$

For square area $A = -20(20) = -400 \text{ mm}^2$

$I_x = I_y = -\frac{1}{3} bh^3 = -\frac{1}{3} (20)(20)^3 = -53.3 \times 10^3 \text{ mm}^4$

$I_z = I_x + I_y = -2 \times (53.3) \times 10^3 = -106.7 \times 10^3 \text{ mm}^4$

For net area $I_x = (503 - 53.3) \times 10^3 = 449 \times 10^3 \text{ mm}^4$

$k_z = k_0 = \sqrt{I_z/A} = \sqrt{\frac{1005 - 106.7}{1257 - 0.4}} = 32.4 \text{ mm}$