STUDY THE CORROSION BEHAVIOR OF CARBON STEEL IN PRESENCE OF CO₂ GAS IN OIL PIPE LINES

Shatha.A.Sameh (Corresponding author)
School of Chemical Engineering, University of Technology
52 Alsinaa St., PO Box 18310, Baghdad, Iraq;
dr_shathasameh@yahoo.com

Shurooq T. Remedhan
salhemeri2004@yahoo.com

Nedhal A. Shaker
nedhal_ahmed2015@yahoo.com

Abstract
The present work is to study the corrosion behavior of carbon steel, in naturally aerated (3.5%wt NaCl) solution. A rotating cylinder electrode (RCE) system was used to produce turbulent flow conditions, polarization experiments were carried at different temperature (298, 308, 318 and 328)K and rotating speed of (0, 100, 200, 300 and 400) r.p.m. at each temperature.

Similar experiments were carried out in (3.5%wt NaCl) solution using CO₂ gas at (32 ml/sec) flow rate. Corresponding experiments by weight loss were carried out in (3.5%wt NaCl) solution with:

1. Kerosene + 10% V salt solution.
2. Gas oil + 10% V salt solution.
 At 328k and (0, 400) r.p.m.
3. Similar experiments were carried out in kerosene + 10% V salt solution at (298, 308 and 318)K and rotating speed (0) r.p.m at each temperature.
4. Experiments were carried out in pure kerosene at temperature (298 and 318)K and speed (0) r.p.m.

All above experiments were carried out with and without CO₂ gas.

The results indicate that the corrosion rate of carbon steel is increasing 70% in the presence of CO₂ gas.

Keywords: Corrosion, Carbon steel, rotating cylinder, polarization.

Introduction
Corrosion has always been one of the major problems in petroleum refineries and in petrochemical plants. Billions of dollars are lost every year because of corrosion. Corrosion of carbon steel by CO₂ has been one of the major problems in the oil industry since 1940 [1]. Recently, it has again come to the fore because of the technique of CO₂ injection for enhanced oil recovery and
exploitation of deep natural gas reservoirs containing carbon dioxide. To date, this form of corrosion is still a major concern for the petroleum industry, particularly in transportation stages\(^\text{(2,3)}\). The presence of carbon dioxide, various salt \((\text{Na}^+, \text{K}^+, \text{Ca}^{2+}, \text{SO}_4^{2-}, \text{Cl}^-, \text{etc})\) organic acid and free water can cause severe corrosion problems in oil and gas pipe lines. Internal corrosion in wells and pipe lines is influenced by temperature, \(\text{CO}_2\) and \(\text{H}_2\text{S}\) content, water chemistry, flow velocity, oil or water wetting, composition and surface condition of the carbon steel. A small change in one of these parameters can change the corrosion rate considerably. In the presence of \(\text{CO}_2\), the corrosion rate can be reduced substantially under conditions when corrosion product, iron carbonate \((\text{FeCO}_3)\) can precipitate on the carbon steel surface and form a dense and protective corrosion product film. This occurs more easily at high temperature\(^\text{(4)}\).

The major chemical reactions include \(\text{CO}_2\) dissolution and hydration to form carbonic acid as shown in equations (1) and (2)\(^\text{(5,6)}\),

\[
\begin{align*}
\text{CO}_2(g) & \rightarrow \text{CO}_2(aq) \quad \ldots \ldots \text{(1)} \\
\text{CO}_2 + \text{H}_2\text{O} & \rightarrow \text{H}_2\text{CO}_3 \quad \ldots \ldots \text{(2)}
\end{align*}
\]

The carbonic acid then dissociates into bicarbonate and carbonate in two steps as in equations (3) and (4),

\[
\begin{align*}
\text{H}_2\text{CO}_3 & \rightarrow \text{H}^+ + \text{HCO}_3^- \quad \ldots \ldots \text{(3)} \\
\text{HCO}_3^- & \rightarrow \text{H}^+ + \text{CO}_3^{2-} \quad \ldots \ldots \text{(4)}
\end{align*}
\]

The electrochemical reactions at the steel surface include the anodic dissolution of iron as given in equation (5)

\[
\text{Fe} \rightarrow \text{Fe}^{2+} + 2\text{e}^- \quad \ldots \ldots \text{(5)}
\]

The cathodic reactions are proton reduction reaction and the direct reduction of carbonic acid as in equations (6) and (7)

\[
\begin{align*}
2\text{H}^+ + 2\text{e}^- & \rightarrow \text{H}_2 \quad \ldots \ldots \text{(6)} \\
2\text{H}_2\text{CO}_3 + 2\text{e}^- & \rightarrow \text{H}_2 + 2\text{HCO}_3^- \quad \ldots \ldots \text{(7)}
\end{align*}
\]

it has been suggested that the direct reduction of bicarbonate ion becomes important at higher \(\text{pH}\)\(^\text{(7)}\).

The overall reaction is:

\[
\text{Fe} + \text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{FeCO}_3 + \text{H}_2 \quad \ldots \ldots \text{(8)}
\]

The presence of \(\text{CO}_2\) increases the rate of corrosion of iron in aqueous solutions by increasing the rate of the hydrogen evolution reaction. In strong acids, which are completely dissociated, the rate of hydrogen evolution cannot exceed the rate
at which H⁺ ions can be transported to the surface from the bulk solution. In solutions with a pH > 4 this mass transfer controlled limiting current is small and the presence of H₂CO₃ enables hydrogen evolution at a much higher rate (1,8). Many have assumed that the two reactions are independent and the net cathodic current is the sum of the currents for the two reactions (9).

Hydrogen evolution from the direct reduction of water which occurs at lower potentials becomes important at pH > 5 and very low partial pressures of CO₂.

\[
2\text{H}_2\text{O} + 2\text{e}^- \rightarrow \text{H}_2 + 2\text{OH}^- \quad \ldots \ldots \quad (9)
\]

that in CO₂ solutions at higher pH the direct reduction of the bicarbonate ion becomes important:

\[
2\text{HCO}_3^- + 2\text{e}^- \rightarrow \text{H}_2 + 2\text{CO}_3^{2-} \quad \ldots \ldots \quad (10)
\]
due to the increasing concentrations of bicarbonate with increasing pH (10,11).

The aim of the present work is to study the corrosion behavior of carbon steel in presence of CO₂ in oil pipeline under different conditions of temperatures and flow rate in (3.5wt%NaCl)solution and kerosene and gas oil immersion. Rotating cylinder electrode (RCE),was employed in the present work in which the corrosion test was carried out under turbulent flow condition,at five controlled rotating speeds of(0,100,200,300 and 400)r.p.m at different temperatures (298,308,318 and 328)K. Two methods used to measure corrosion rate were, electrochemical method and immersion test method. The experiments were carried out with and without CO₂ gas.

Experimental work

Materials

Materials used in this work is low carbon steel the composition is given in table (1). The chemical analysis was performed by state company for Inspection and Engineering Rehabilitation (S.I.E.R). The specimen was cylinder of 16mm i.d., 28 mm o.d.and 20 mm height with surface area of 17.6 cm².

| Table (1): Spectrographic composition of carbon steel |
|--------------------|--------------|-------------|------------|---------|--------|------|-------|-------|--------|--------|
| Sample | C% | Co% | Mn% | Si% | Ni% | S% | Cr% | Al% | P% | Mo% | Cu% | Fe% |
| Specimen | 0.051 | 0.012 | 0.653 | 0.287 | 0.115 | 0.011 | 0.146 | 0.031 | 0.002 | 0.028 | 0.132 | Bal. |
| Bolt | 0.001 | 0.001 | 0.386 | 0.148 | 0.022 | 0.016 | 0.006 | 0.003 | 0.018 | 0.002 | 0.001 | Bal. |

Prior to every experiment, the carbon steel electrode surface was abraded on successive grades of silicon carbide from (100,120,400,600,800,1000) grit under running tap water. it was then washed with running tap water followed with distilled water , rinsed with acetone and dried with clean tissue paper , it was then kept in a desiccator over a silica gel. Figures (1) and (2) show the surface of low carbon steel as polished and after eaching respectively, it's shown clean and smooth.
Fig. (1) The surface of low carbon steel.

Fig. (2) The surface of carbon steel after eaching.

Chemical Solutions
Distilled water, analar NaCl to prepare 3.5wt% solution. The electrolyte pH was measured before each test by using digital pH meter (HANNA instruments - H19811-5 pH/C0/Ec/TDS) meter, which was calibrated using buffer solution of pH 4 and 9. The initial electrolyte pH was (5), and the final electrolyte pH was (3.8). Commercially available kerosene and gas oil samples were purchased from oil marketing companies operating in (Daura refinery). The density of each kerosene and gas oil was measured using density bottle, they are about 0.802 and 0.844 gm/cm³ respectively.

Testing Procedure
The experimental work is divided into two parts, the first was achieved using polarization technique to determine the corrosion rate of carbon steel in 3.5% NaCl solution at temperatures (298,308, 318 and 328) K and (0,100,200,300 and 400)rpm. All above experiment were repeated in presence of CO₂ gas at a rate of 32ml/sec. A schematic representation of the polarization test shown in figure(3).
The second part was immersion test using weight loss method at the following conditions:
1) Kerosene +10% V salt solution at (298,308 and 318)K and rotation speed (0) at a temperature of 328K and (0, 400) rpm rotation speed
2) Gas oil +10% V salt solution at 328K and (0,400)rpm.
3) Pure kerosene at (298 and 318)K and 0 rpm.
All above experiment were carried out with and without CO2 gas as shown in figure (4).
After surface preparation of the sample, the weight of carbon steel specimen was recorded then immersed in the prepared solution at the preset temperature and rotating speed. After 4 hr exposure the specimen was cleaned with distilled water then with acetone and dried with a clean tissue and kept in a desiccator over a silica gel for one hour before weighing.

Electrochemical corrosion tests

The polarization cell was filled with 2 liter of the required test solution, and then placed inside a constant temperature water bath supplied with thermostat to keep the temperature constant at about (±1 °C) the preset temperature. After that, the water bath was raised up using a car jack, until the RCE was introduced into the solution. A capillary connection to the reference electrode (saturated calomel electrode, SCE) was used with its tip acting as the luggin prob. The tip was adjusted to within (1-2) mm from the specimen surface. The SCE was used throughout the whole programme. Potentials were measured with reference to this electrode. The working, counter (graphite) and reference electrode were connected to a potentiostat (WenkingLT.87). The carbon steel electrode was electrochemically polarized to (-1.000V) the RCE was set in motion at the required r.p.m by manually adjusting the speed controller. The potential was kept at (-1.000V) for (15 min.) then a complete electrochemical polarization was carried out and scanned potentiostatically in the noble (positive) direction with scan rate of 20×10^{-3} v/min until (-0.3V) potential. The current and voltage were checked and read from two digital millimeters MT8045.

The reported results are the average values of duplicated experimental runs obtained with satisfactory reproducibility.
Fig. 5 The Apparatus

Fig. (6) The Rotating cylinder electrode assembly in polarization cell.
Results and discussion
Two different techniques were used in this study. Firstly polarization technique from negative potential in a cathodic region -1V till -0.3V in anodic region with and without CO$_2$ using 3.5% NaCl solution to calculate the corrosion rate in mils penetration per year (mpy) using the following formula:

$$\text{mpy} = 0.13 \frac{i_{corr} \times \text{at wt}}{\rho \times n}$$

Where:
- i_{corr} = current density in $\mu A/cm^2$,
- at wt = atomic weight of specimen g/gmol
- ρ = density of specimen in g/cm3
- n = electron loss. 2

Figs. 8 - 15 show the polarization diagram of carbon steel in different temperatures and rotation speed without and with CO$_2$.

Tables 2 and 3 show the corrosion current density of carbon steel without and with CO$_2$ respectively.

Secondly immersion test for kerosene and gas oil with 10% V salt solution with and without CO$_2$ using weight loss, the most convenient way of expressing corrosion rates is mils penetration per year (mpy) and is calculated by using the following formula (8):

$$\text{mpy} = \frac{k \Delta w}{\rho A t}$$
where: \(w \) = weight loss in gm,
\[\rho \] = density of specimen in g/cm\(^3\),
\(K \) = Constant factor is \(3.45 \times 10^{-6} \),
\(A \) = area of specimen in cm\(^2\),
\(t \) = time in hours.

Kerosene and gasoil were provided from Daura refinery.

Tables 4 and 5 show the corrosion rate of carbon steel in kerosen and gas oil without and with CO\(_2\) gas respectively.

1) Effect of temperature on corrosion current density:
Figures (8-11) show the polarization diagram of carbon steel in 3.5wt% NaCl solution while figures (12-15) show them with the presence of CO\(_2\) gas. The corrosion current density increase with increasing temperature at constant rotation speed. Increasing temperature almost increase the rate of all chemical reactions according to Arrhenius equation. Also it enhance the diffusion of oxygen in the solution due to increase molecular diffusion coefficient, in spite of decreasing the solubility of oxygen. Finally increasing temperature cause decrease of the compactness of the corrosion product which in turn decreases the resistance to corrosion (12). Figure (16) shows the variation of corrosion rate with temperature without CO\(_2\) gas.

Moreover the corrosion current density in the presence of CO\(_2\) gas was more than that obtained without CO\(_2\) gas at the same conditions. Figure (17) shows the corrosion rate of carbon steel in 3.5 wt% NaCl solution with CO\(_2\) gas. This is because the existance of carbonic acid which leads to increase the cathodic reactions equations (2–4) which it must be in equilibrium with the oxidation rate, i.e., the anodic reaction.
Fig. 8 Potentiostatic polarization curves in 3.5wt%NaCl solution, without CO₂, Temp.= 298 K.

Fig. 9 Potentiostatic polarization curves in 3.5wt% NaCl solution, without CO₂, Temp.= 308 K.
Fig. 10 Potentiostatic polarization curves in 3.5wt% NaCl solution, without CO₂, Temp. 318 K.

Fig. 11 Potentiostatic polarization curves in 3.5wt% NaCl solution, without CO₂, Temp.= 328 K.
Fig. 12 Potentiostatic polarization curves in 3.5wt% NaCl solution, with CO₂, Temp. = 298 K.

Fig. 13 Potentiostatic polarization curves in 3.5wt% NaCl solution, with CO₂, Temp. = 308 K.
Fig. 14 Potentiostatic polarization curves in 3.5wt% NaCl solution, with CO₂, Temp.= 318 K.

Fig. 15 Potentiostatic polarization curves in 3.5wt% NaCl solution, with CO₂, Temp.= 328 K.
The effect of velocity on the corrosion current density:

From figures (18 and 19) it is clear that increasing rotation speed leads to increase the corrosion current density without and with CO₂ gas respectively at constant temperature. Increasing velocity enhance turbulence which in turn increase the transport rate of oxygen close to the metal surface, and act to erode the formed film so higher mass transfer rate introduced.
Moreover the corrosion current density of carbon steel with CO\(_2\) gas are higher than that obtained without CO\(_2\) gas. This is also due to carbonic acid formation that increased the attack on carbon steel by increasing the hydrogen diffusion to the metal surface and the diffusion or transfer of metal ions from the metal surface to the bulk of solution\(^\text{(14)}\).

The corrosion current density at different temperatures and flow rates are given in Tables (2 and 3).

Table (2): The Corrosion current density mA/cm\(^2\) without CO\(_2\) gas.

<table>
<thead>
<tr>
<th>r.p.m</th>
<th>Temperature, K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>298</td>
</tr>
<tr>
<td>0</td>
<td>0.0215</td>
</tr>
<tr>
<td>100</td>
<td>0.026</td>
</tr>
<tr>
<td>200</td>
<td>0.085</td>
</tr>
<tr>
<td>300</td>
<td>0.113</td>
</tr>
<tr>
<td>400</td>
<td>0.204</td>
</tr>
</tbody>
</table>

Table (3): The Corrosion current density mA/cm\(^2\) with CO\(_2\) gas.

<table>
<thead>
<tr>
<th>r.p.m</th>
<th>Temperature, K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>298</td>
</tr>
<tr>
<td>0</td>
<td>1.85</td>
</tr>
<tr>
<td>100</td>
<td>2.3</td>
</tr>
<tr>
<td>200</td>
<td>2.6</td>
</tr>
<tr>
<td>300</td>
<td>3.3</td>
</tr>
<tr>
<td>400</td>
<td>3.5</td>
</tr>
</tbody>
</table>
Fig. 18 Variation of corrosion current density vs rotation speed for constant temperature, without CO₂

Fig. 19 Variation of corrosion current density vs rotation speed for constant temperature, with CO₂

Immersion Tests:

Tables (4 and 5) show the corrosion rate of kerosene and gasoil with 10%V salt solution without and with CO₂ gas at constant temperature and 0.400 rpm rotation speed. Corrosion rate increases with increasing rotation speed at constant temperature. It appears that the corrosion rate of gas oil higher than that of kerosene, this may be attributed to that gas oil contains more sulfur compound than that in kerosene. It
contains 10000 ppm H₂S, higher percent of margabtian and water according to the labrotary test of Al Doura refinery.

Table (4): Corrosion rate of carbon steel for both kerosene and gas oil in 10% V NaCl solution at 298 K without CO₂ gas.

<table>
<thead>
<tr>
<th>r.p.m</th>
<th>Kerosene mpy</th>
<th>Gas oil mpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12.4809</td>
<td>16.374</td>
</tr>
<tr>
<td>400</td>
<td>20.043</td>
<td>33.39</td>
</tr>
</tbody>
</table>

Table (5): Corrosion rate of carbon steel for both kerosene and gas oil in 10% V NaCl solution at 298 K with CO₂.

<table>
<thead>
<tr>
<th>r.p.m</th>
<th>Kerosene mpy</th>
<th>Gas oil mpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>28.7062</td>
<td>32.567</td>
</tr>
<tr>
<td>400</td>
<td>38.43</td>
<td>48.87</td>
</tr>
</tbody>
</table>

Table 5 shows that the corrosion rate in the presence of CO₂ gas are more than that obtained without CO₂. This is also because CO₂ gas hydrates to form carbonic acid, which dissociates to give hydrogen ion and a bicarbonate ion, which dissociates again to give another hydrogen ion and a carbonat. According to equations (1 - 4).

Table (6): Corrosion rate of carbon steel for kerosene in 10V% NaCl at r.p.m = 0

<table>
<thead>
<tr>
<th>Temperature K</th>
<th>Without CO₂ mpy</th>
<th>With CO₂ Mpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>7.4885</td>
<td>13.1050</td>
</tr>
<tr>
<td>308</td>
<td>9.3607</td>
<td>21.8417</td>
</tr>
<tr>
<td>318</td>
<td>11.2328</td>
<td>26.2100</td>
</tr>
<tr>
<td>328</td>
<td>12.4809</td>
<td>28.7062</td>
</tr>
</tbody>
</table>

Table 6 indicates that the corrosion rate with CO₂ is higher than that without CO₂ with increasing temperature due to formation of carbonic acid.
Table (7) : Corrosion rat of carbon steel for 4hr in pure kerosene at static condition r.p.m = 0.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Without CO₂ mpy</th>
<th>With CO₂ Mpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>1.2480</td>
<td>1.8721</td>
</tr>
<tr>
<td>318</td>
<td>2.49619</td>
<td>3.12024</td>
</tr>
</tbody>
</table>

Table 7 indicates that the corrosion rate higher with CO₂ than that without CO₂. The corrosion rate of pure kerosene is much lower than that obtained in kerosene contain 10V% NaCl solution.

Microscopic observations:
Figure 20 shows the surface of carbon steel after polarization in 3.5wt%NaCl solution, it's found that the pitting occurs on the surface but these pittings are not deep and small in size.

![Fig. 20 Corrosion on surface of carbon steel in 3.5wt% NaCl without CO₂ at 328 K and 400 r.p.m.](image)

Figure 21 shows the pitting formation on the carbon steel in salt solution containing CO₂ gas, the dark zones represent appearance of deep pits in the surface, these pits are initiated and grow until they cover most of surface with increasing potentials.

![Fig. 21 Corrosion on surface of carbon steel in 3.5wt% NaCl with CO₂ at 328 K and 400 r.p.m.](image)
Figure 22 shows the pitting formation on carbon steel in gasoil +10V% salt solution containing CO$_2$. It's found that the pits in big size and large number compared with the pits in figure 23, that’s mean the kerosene do not attack the surface of carbon steel aggressively like gasoil with CO$_2$.

Fig. 22 Corrosion on surface of carbon steel in gas oil + 10% V NaCl with CO$_2$ at 328 K and 400 r.p.m.

Fig. 23 Corrosion on surface of carbon steel in kerosene + 10% V NaCl with CO$_2$ at 328 K and 400 r.p.m.

Figures 24 shows the pitting formation on the surface for carbon steel. The observed pits are clearly not deep with small size in large numbers compared with the other specimens.

Fig. 24 Corrosion on surface of carbon steel in kerosene pure at 318 K and 0 r.p.m.
Conclusion:
From the present study, the following conclusions are drawn:
1. The corrosion rate is higher with the presence of CO$_2$ gas than that with out CO$_2$ gas.
2. The corrosion rate in general increases with increasing flow rate and temperature.
3. The Iron carbonate film formed appears to be a loose film if the concentration of the carbonate in the solution is not saturated. This condition is flow rate and temperature dependent.
4. The corrosion potential shifted to more noble values with increasing the flow rate and shifted to more negative with increasing the temperature.
5. The corrosion potentials and corrosion rates were found to be under mixed control of the anodic and cathodic processes. The corrosion rates increased with increasing temperature according to Arrhenius equation. The flow rate had significant effect on the corrosion potentials.
6. The present study has highlighted the corrosive nature of some kerosen and gas oil samples and that corrosion of carbon steel metal surface in contact with these fluids will increase much greater as the temperature is raised.

References