Q1) You have a problem called (Independent Set) as follows:

"Given a graph $G=(V,E)$, we say a set of nodes $S \subseteq V$ is independent if no two nodes in S are joined by an edge. The independent set problem is, given G, find an independent set that is as large as possible". For example, the maximum size of an independent set in the below graph is four, achieved by the 4 nodes independent set {1, 4, 5, 6}. Write an algorithm to find Independent Set using Simulated Annealing technique.

![Graph Example]

Q2) Find the association rules from the following transaction sample:

<table>
<thead>
<tr>
<th>ID</th>
<th>Transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A B D</td>
</tr>
<tr>
<td>2</td>
<td>A B C D</td>
</tr>
<tr>
<td>3</td>
<td>B C</td>
</tr>
<tr>
<td>4</td>
<td>A B C D</td>
</tr>
<tr>
<td>5</td>
<td>C D</td>
</tr>
<tr>
<td>6</td>
<td>A B C D</td>
</tr>
<tr>
<td>7</td>
<td>B C</td>
</tr>
</tbody>
</table>

Hint: Minimum support = 2

Q3) Write the general pseudo code of Bees Colony Algorithm (BCA), then trace it to illustrate how BCA can solve 4-colors mapping.
Q4) A) Write a “specific to general” learning algorithm. Then trace the following facts using above algorithm.

- Positive (large, blue, cube)
- Positive (small, blue, ball)
- Positive (small, blue, cube)
- Positive (large, blue, ball)

B) Write a predicate planning rules for the block world problem as in the below figure.

![Start State](image1)

B C
A
Start State

![Goal State](image2)

C
B
A
Goal State

Q5) Suggest an approach to design hybrid search technique depend on Variable Neighborhood Search & Scatter Search, give a simple example for hybrid technique.

Q6) Write a pseudo code of the following meta-heuristic algorithms (only 3) with features of each one:

1- GRASP.
2- VNS.
3- Scatter Search.
4- Tabu Search.
5- Iterated Local Search.