Note: Answer five questions only

Q1 A) Discuss the mathematical model of finite group and finite field
B) For n equal 15, 17 and 19 prove that the finite set \mathbb{Z}_n with the two operations

\[A \oplus B = A + B \text{ (mod} n) \],
\[A \odot B = A \cdot B \text{ (mod} n) \]
is a finite (group, field) or not.

Q2 Consider the MixColumns Transformation for Encryption and Decryption mathematical model, based on the field $\mathbb{GF}(5)$ and by using the key matrix $k = \begin{pmatrix} 4 & 2 \\ 1 & 1 \end{pmatrix}$ and $k^{-1} = \begin{pmatrix} 3 & 4 \\ 2 & 2 \end{pmatrix}$

A) Encrypt the plain text message \{2 1 3 2 2 4\}.
B) Decrypt the cipher text message \{2 3 4 4 2 2\}.

Q3 Compute the Addition and Multiplication tables of the finite field $\mathbb{GF}(2^2)$ by choosing the irreducible polynomial $x^2 + x + 1$.

Q4 Consider the finite field $\mathbb{GF}(2^3)$ by choosing irreducible polynomial $x^3 + x^2 + x + 1$
A) Compute $(1 0 0 1 1) \oplus (1 0 0 1 1)$ and $(1 0 0 1 0) \oplus (1 0 0 0 0)$
B) Compute $(0 1 0 1 1) \odot (1 0 1 0 1)$ and $(1 0 0 1 1) \odot (1 0 0 1 1)$
C) Compute $(1 0 0 0 0) \odot ((1 0 1 0 1) \oplus (1 0 1 0 1))$

Q5 Consider the Hill Cipher Encryption System mathematical model, based on the field $\mathbb{GF}(2^3)$ by choosing irreducible polynomial $x^3 + x + 1$, use the key matrix $K = \begin{pmatrix} x^2 + 1 & 1 & x \\ 1 & x & x^2 \\ x^2 & 1 & x^2 \end{pmatrix}$
to Encrypt the plain text message:
\{x^2 + x + 1 x^2 + x x^2 + 1 x^2 x + 1 x 1 0\}

Q6 A) Discuss the elliptic curve $E_{23}(1,1)$ basing on the equation $y^2 = x^3 + x + 1$ and Compute five the points \{p1, p2, p3, p4, p5\} only of its discreet elliptic group.
B) Compute the points $p2 + p4, p3 + P3$

Good Luke