

Department of Computer Sciences/ University of technology / Baghdad 1

Proposed 256 bits RC5 Encryption Algorithm
Using Type-3 Feistel Network

Dr. Yossra H. Ali

Abstract
Proposed 256 bits RC5 is an improvement to RC5, designed to meet the

requirements of increased security and better performance. Proposed 256 bits RC5
algorithm makes use of data dependent rotations. One new feature of proposed 256
bits RC5 algorithm is modified its design to use four 64-bit registers rather than two
32-bit registers. The proposal 256 bits RC5 algorithm using Type-3 Feistel network
which is iterated simple function 20 times. An Avalanche Effect of RC5 is about
31.372 if we change the same amount of information in key for 256 bits RC5 then the
Avalanche Effect is about 142.909. The proposed algorithm is resistant to matching
and a dictionary attack which is increased the security of the previous RC5 algorithm
by using block size of 256 bits instead of 64 bits.

Keywords: Cryptography, RC5, Type -3 Feistel.

 Type -3 Feistel باستخدام شبكة bits RC5 256 اقتراح خوارزمية تشفير

 ةالخلاص

صممت لتحقيѧق متطلبѧات زيѧادة ،RC5المقترحة ھي تطوير الى bits RC5 256تشفير خوارزمية
مѧѧن الخوارزميѧѧة تسѧѧتخدم الابѧѧدالات المعتمѧѧدة علѧѧى البيانѧѧات والتѧѧي ھѧѧي واحѧѧدة ھѧѧذه ،الامنيѧѧة وتحسѧѧين الاداء

 Type -3 شѧبكة تستخدم وھي bits ٣٢بدلا من bits ٦٤الخواص الجديدة لھذه الخوارزمية حيث تستخدم
Feistel يطةѧة بسѧرة ٢٠والتي تكرر دالѧم. ѧـال Avalanche Effect ѧـلل RC5 واليѧا و٣١.٣٧٢حѧاذا غيرن

. ١٤٢.٩٠٩حѧوالي Avalanche Effect الѧـ سيكون فخوارزمية المقترحة المفتاح لكمية المعلومات نفس
والتѧي زيѧدت الامنيѧة للخوارزميѧة dictionary و matchingترحѧة قويѧة لھجѧوم ال قالخوارزميѧة المفلѧذلك

 .bits ٦٤بدلا من bits ٢٥٦السابقة باستخدام حجم كتلة

 Proposed 256 bits RC5 Encryption Algorithm
 Using Type-3 Feistel Network

 2

1. Introduction

Symmetric encryption system
consists of a set of possible plaintext
messages (i.e., the plaintext message space
M), a set of possible ciphertexts (i.e., the
ciphertext space C), a set of possible keys
(i.e., the key space K), as well as two
families of encryption and decryption
functions (or algorithms) that are inverse
to each other as shown in figure(1).

• A family E = {Ek : k ∈ K} of encryption
functions Ek :M→C;
• A family D = {Dk : k ∈ K} of decryption
functions Dk : C →M.
For every key k ∈ K and every message m
∈ M, the functions Dk and Ek must be
inverse to each other (i.e., Dk(Ek(m)) =
Ek(Dk(m)) = m) [1].

Symmetric-key block ciphers have
long been used as a fundamental
cryptographic element for providing
information security. Although they are
primarily designed for providing data
confidentiality, their versatility allows
them to serve as a main component in the
construction of many cryptographic
systems such as pseudorandom number
generators, message authentication
protocols, stream ciphers, and hash
functions.

There are many symmetric-key
block ciphers which offer different levels
of security, flexibility, and efficiency.
Among the many symmetric-key block
ciphers currently available, some (such as
DES, RC5, CAST, Blowfish, FEAL,
SAFER, and IDEA) have received the
greatest practical interest.

Most symmetric-key block ciphers

(such as DES, RC5, CAST, and Blowfish)
are based on a “Feistel” network construct
and a “round function”. The round
function provides a basic encryption
mechanism by composing several simple
linear and nonlinear operations such as
exclusive-or, substitution, permutation,
and modular arithmetic.

Different round functions provide
different levels of security, efficiency, and
flexibility. The strength of a Feistel cipher
depends heavily on the degree of diffusion
and non-linearity properties provided by
the round function [2].

This paper also present some
existing modern cipher such as ABC is a
substitution-permutation network
comprising 17 rounds with 3 different
kinds of round functions. It is derived
from MMB and SAFFER block cipher [3]
and Unbalanced Feistel Networks and
Block-Cipher Design (UFNs) consist of a
series of rounds in which one part of the
block operates on the rest of the block [4].
And also PRESENT: An Ultra-
Lightweight which is block cipher. It is an
example of an SP-network and consists of
31 rounds. The block length is 64 bits and
two key lengths of 80 and 128 bits are
supported [5].

2. RC5 Algorithm

The RC5 encryption algorithm
was designed by Ronald Rivest of
Massachusetts Institute of Technology
(MIT) and it first appeared in December
1994. RSA Data Security, Inc. estimates
that RC5 and its successor, RC6, are
strong candidates for potential successors
to DES. RC5 analysis is still in progress
and is periodically updated to reflect any
additional findings [6].

2.1 Description of RC5

RC5 is a symmetric block cipher
designed to be suitable for both software
and hardware implementation. It is a
parameterised algorithm, with a variable
block size, a variable number of rounds
and a variable-length key. This provides
the opportunity for great flexibility in both
performance characteristics and the level
of security. A particular RC5 algorithm is
designated as RC5-w/r/b. The number of
bits in a word, w, is a parameter of RC5.
Different choices of this parameter result
in different RC5 algorithms. RC5 is
iterative in structure, with a variable
number of rounds. The number of rounds,
r, is a second parameter of RC5. RC5 uses
a variable-length secret key. The key

http://en.wikipedia.org/wiki/Substitution-permutation_network

 Proposed 256 bits RC5 Encryption Algorithm
 Using Type-3 Feistel Network

length b (in bytes) is a third parameter of
RC5. These parameters are summarised as
follows:
w: The word size, in bits. The standard
value is 32 bits; allowable values are 16,
32 and 64. RC5 encrypts two-word blocks
so that the plaintext and ciphertext blocks
are each 2w bits long.

r: The number of rounds. Allowable
values of r are 0, 1, . . . , 255. Also, the
expanded key table S contains t = 2 (r + 1)
words.

b: The number of bytes in the secret key
K. Allowable values of b are 0, 1, . . . ,
255. K: The b-byte secret key; K[0], K[1],
. . . , K[b − 1]

RC5 consists of three components:
a key expansion algorithm, an encryption
algorithm and a decryption algorithm.
These algorithms use the following three
primitive operations:

1. + Addition of words modulo 2w
2. ⊕ Bit-wise exclusive-OR of words
3. <<< Rotation symbol: the

rotation of x to the left by y bits is
denoted by x <<< y.

One design feature of RC5 is its
simplicity, which makes RC5 easy to
implement. Another feature of RC5 is its
heavy use of data-dependent rotations in
encryption; this feature is very useful in
preventing both differential and linear
cryptanalysis [6].

 2.2 Key Expansion

The key-expansion algorithm
expands the user’s key K to fill the
expanded key table S, so that S resembles
an array of t = 2(r + 1) random binary
words determined by K. It uses two word-
size magic constants Pw and Qw defined
for arbitrary w as shown below:
Pw = Odd ((e − 2)2w)
Qw = Odd ((φ − 1)2w)
Where
e = 2.71828 . . . (base of natural
logarithms)
φ = (1 +√5)/2 = 1.61803 . . . (golden
ratio)
Odd(x) is the odd integer nearest to x

- First algorithmic step of key expansion:
This step is to copy the secret key K[0, 1, .
. . ,b − 1] into an array L[0, 1, . . . , c − 1]
of c = _b/u_ words, where u = w/8 is the
number of bytes/word. This first step will
be achieved by the following pseudocode
operation:

for i = b − 1 down to 0 do
 L[i/u] = (L[i/u] <<< 8) + K[i]; where all
bytes are unsigned and the array L is
initially zeroes.
- Second algorithmic step of key
expansion: This step is to initialise array S
to a particular fixed pseudo-random bit
pattern, using an arithmetic progression
modulo 2w determined by two constants
Pw and Qw.
S[0] = Pw
for i = 1 to t − 1 do S[i] = S[i − 1] + Qw

- Third algorithmic step of key
expansion: This step is to mix in the
user’s secret key in three passes over the
arrays S and L. More precisely, due to the
potentially different sizes of S and L, the
larger array is processed three times, and
the other array will be handled more after.

i = j = 0
A = B = 0
do 3∗ max (t, c) times
A = S[i] = (S[i] + A + B) <<< 3
B = L[j] = (L[j] + A + B) <<< (A + B)
i = (i + 1) (mod t)
j = (j + 1) (mod c)

Note that with the key-expansion
function it is not so easy to determine K
from S, due to the one-wayness [6].

2.3 Encryption

The input block to RC5 consists of
two w-bit words given in two registers, A
and B. The output is also placed in the
registers A and B. Recall that RC5 uses an
expanded key table, S[0, 1, . . . , t − 1],
consisting of t = 2(r + 1) words. The key-
expansion algorithm initialises S from the
user’s given secret key parameter K.
However, the S table in RC5 encryption is
not like an S-box used by DES. The
encryption algorithm is given in the
pseudocode as shown below:

 3

 Proposed 256 bits RC5 Encryption Algorithm
 Using Type-3 Feistel Network

A = A + S[0]
B = B + S[1]
for i = 1 to r do
A = ((A ⊕ B) <<< B) + S[2i]
B = ((B ⊕ A) <<< A) + S[2i + 1]
The output is in the registers A and B

2.4 Decryption

RC5 decryption is given in the
pseudocode as shown below.

For i = r down to 1 do
B = ((B − S[2i + 1]) >>> A) ⊕ A
A = ((A − S[2i]) >>> B) ⊕ B
B = B − S[1]
A = A − S[0]

The decryption routine is easily
derived from the encryption routine. The
RC5 encryption/decryption algorithms are
illustrated as shown in Figure (2) and (3)
respectively [6].

3. Type-3 Feistel network

In Type-3 Feistel network each
block consists of four words as shown in
figure (4). Among the various network-
structures which are capable of handling
four words in a block, it seems that a type-
3 Feistel network provides the best
tradeoff between speed, strength and
suitability for analysis.

A type-3 Feistel network consists
of many rounds; where in each round one
data word (and a few key words) is used to
modify all the other data words. Compared
with a type-1 Feistel network (where in
each round one data word is used to
modify one other data word), this
construct provides much better diffusion
properties with only a slightly added cost.
Hence, fewer rounds can be used to
achieve the same strength [2].

A type-3 Feistel network provides

the best tradeoff between speed, strength
and suitability for analysis. A desirable
property of an encryption algorithm is that
a small change in either the plaintext or
the key should produce a significant
change in the ciphertext. This is so called
Avalanche Effect [2].

4. Proposed 256 bits RC5 Encryption
Algorithm

In general the proposed algorithm
differs from the previous RC5 algorithm
which encrypts and decrypts 64-bit block
size. The proposed algorithm could be
used to encrypt and decrypt 256 bits block
size. Figure (5) shows the structure of
proposed algorithm which in fact is a
Type-3 Feistel network. It consists of
splitting the plaintext into four 64 bits
words. A type-3 Feistel network consists
of many rounds in each round the output
of RC5 is the input to E-function (which is
derived from MARS algorithm) then, one
data word will be used as the input to the
E-function and the three output words
from the E-function are added or XORed
to the other three data words. In addition,
the source word is rotated by 13 positions
to the left.

The Proposed algorithm is
designed to use a full menu of “strong
operations” supported in modern
computers to achieve better security
properties, high speed, and
implementation flexibility. Proposal
algorithm will be used primitive
operations (add, subtract, multiply,
exclusive-or, and data-dependent rotate).

The Algorithm, in Figure (6),

shows the encryption operation of
proposed algorithm in details. The cipher
is working with64 bit words in that all the
operations. In this algorithm the following
notations are used. The denoted by c^d a
bitwise Exclusive-OR of the two words c

and d , c+d addition modulo 264, c-d

subtraction modulo 264, and c×d

multiplication modulo 264. Also, c<<<d
and c>>>d, denote cyclic rotations of the
64-bit word c by d positions to the left and
right, respectively.

The decryption operation of

proposed algorithm is the inverse of the
encryption operation as shown in figure
(7).

4.1 The E-function

 The E-function is derived from
Mars Encryption algorithm [2] with some

 4

 Proposed 256 bits RC5 Encryption Algorithm
 Using Type-3 Feistel Network

modifications in proposed algorithm. The
E-function takes as input one data of 64
bits word and uses two more key words to
produce three output words. In this
function three temporary variables will be
used, denoted below by L, M and R (for
left, middle and right). Below it is also
refer to these variables as the three “lines”
in the function. Initially, R will be set to
hold the value of the source word rotated
by 13 positions to the left, and M will be
set to hold the sum of the source word and
the first key word as shown in figure (8).

The second key word is multiplied

(constrained to contain an odd integer)
into R and then rotate R by 5 positions to
the left (so the 5 highest bits of the product
becomes the 5 lowest bits of R after the
rotation). Then R XORed into L, and also
view the five lowest bits of R as a rotation
amount between 0 and 31, and rotate M to
the left by this amount. Next, R will be
rotated R by 5 more positions to the left
and XOR it into L. Finally, again the five
lowest bits of R will be viewed as a
rotation amount and rotate L to the left by
this amount. The first output word of the
E-function is L, the second is M and the
third is R (see figure (6)).

5. Security of the Proposed 256 bits RC5

Algorithm

5.1 Matching ciphertext attack

 The block size of 256 bits
makes proposed algorithm
resistant to the matching
ciphertext attack. Where after

encryption of 2128 blocks, equal
ciphertexts can be expected and
information is leacked about
plaintext but, the previous
RC5algorithm with 64 bits block

size will be required to 232
ciphertext [7].

5.2 Dictionary Attacks

 As the block size is 64 bits, a

dictionary will require 2 64 different
plaintexts to allow the attacker to
encrypt or decrypt arbitrary message

under an unknown key, While the

proposed algorithm will require 2 256
different plaintexts. This attack
applies to any deterministic block
cipher with 128-bit blocks regardless
of its design [7].

5.3 Avalanche Effect

Horst Feistel referred to the
avalanche effect as: “a small change in the
key gives rise to a large change in the
ciphertext” [8].

The following example describe this
operation

If we take plaintext in
hexadecimal "00000000" and using

Key1 =
00000000000000000000000000000000.

Key2=
00000000000000000000000000000001.

When encrypted by RC5 before
improvement ,The plaintext that will be
encrypted by key1 and key2 respectively
as shown below

Ciphertext1 =
"4b56cf91e4b70955"

Ciphertext2 =
"3be66a18629dcfce "

if the ciphertext1 and ciphertext2
converted to binary digit

"010010110101011011001111100100011
1100100101101110000100101010101"
"001110111110011001101010000110000
1100010100111011100111111001110"
The changing of bits between two
ciphertexts equal to 28 which are
represents the avalanche effect.

 In this section is prepared for making
statistical test on the ciphertext that
produced from encryption the following
plaintext:

“Cryptography, simply defined, is the
process of combining some input data,
called the plaintext, with a user-specified
password to generate an encrypted
output, called ciphertext, in such a way
that, given the ciphertext, no one can
recover the original plaintext without the
encryption password in a reasonable
amount of time .“

 5

 Proposed 256 bits RC5 Encryption Algorithm
 Using Type-3 Feistel Network

 And using a key of length 32 bytes where
the key is “ffffffffffffffffffffffffffffffff”.

Then compute the avalanche effect to
above plaintext by RC5 before and after
improvement, these operations describe in
tables (1) and (2).

Table (1) shows the avalanche

effect on the plaintext when only one bit is
changed in the key by using proposed 256
bits RC5 algorithm.

Table (2) shows the avalanche

effect on the plaintext when only one bit is
changed in the key by using previous RC5
algorithm.

Table (1) shows that the average

of avalanche effect of proposed 256 bits
RC5 algorithm is 142.909 while table (2)
shows that the average of the avalanche
effect of previous 64 bits RC5 algorithm is
31.372.

Tables (1) and (2) are also show

that the changing are 24 to 37 bits, (where
the 24 represent the smallest avalanche
effect and 37 represent the biggest
avalanche effect) out of 64 bits and 124 to
157, (where the 124 represent the smallest
avalanche effect and 157 represent the
biggest avalanche effect) bits out of 256
bits when performing the algorithm before
and after improved respectively which
mean that 37.5 to 57.82 of each block of
the ciphertext is changed,

 Where
 24/ 64 *100 = 37.5

and 37/64*100= 57.82
After performing the improved RC5
algorithm the changing of each block of
the ciphertext is 48.437 to 61.328,
 Where
 124/256* 100 = 48.437
and 157/256 *100= 61.328.
6. Time requirement:
 In this section the time
requirements are computed for the
proposed 256 bits RC5 algorithm and the
previous 64 bits RC5. Table (3) show this
test.

7. The Complexity of Proposed
Algorithm

To estimate the complexity of a
cryptanalytic attack, one must consider at
least the time it takes, the amount of data
that is needed, and the storage
requirements. For an n-bit block cipher the
following complexities should be
considered.

Data complexity: the amount of data
needed as input to an attack. Units are
measured in blocks of length n.
Processing complexity: the time needed to
perform an attack. Time units are
measured as the number of encryptions an
attacker has to do himself.
Storage complexity: the words of memory
needed to do the attack. Units are
measured in blocks of length n.

The complexity of an attack is often
taken as the maximum of the three
complexities above; however, in most
scenarios the amount of data encrypted
with the same secret key is often limited
and for most attackers the available
storage is small. This demonstrates two
important ideas [9].

• The running time of an algorithm

is measured in terms of the
number of ‘basic operations’
performed.

• The running time of an algorithm
will usually depend on the size of
the input.

The proposed algorithm increased the

complexity by increasing the block size
from 64 bits to 256 bits. The E-function
uses the combinations of basic operations
to achieve a large number of encryption
functions, i.e. permutations of binary n-bit
vectors, addition, multiplication and
rotation then will be produced a high
structural complexity.

8. Discussions
 The proposed algorithm is a secure,
compact and simple block cipher. It offers
good performance a considerable exibility.

 6

 Proposed 256 bits RC5 Encryption Algorithm
 Using Type-3 Feistel Network

 During the design process,
several things can be concluded about
cipher design:

1. The design has to remain simple.
2. Re-use the key schedule that was used

in RC5, this already had an excellent
track as a rock-solid key schedule and
had been studied widely.

3. The E-function is used to approximate a
pseudo-random function, in the
function the three lines will be made of
as “independent of each other” as
possible. Thus very little interaction
between the data in the three lines will
be used. This also helps to avoid
unwanted cancellations and makes it
harder to obtain a linear approximation
of one line in terms of another

4. Still trying to guarantee some measure
of “independence” between the data
lines, the value of one line will make
sure that never completely determines
the value of another line. Indeed, the
relative entropy of any two lines is at
least 9 bits (of lines L, R), and gets as
high as 64 bits (of lines R, M).

5. It is based on simple theory principles
and simple arithmetic operations and
easy to implement. So, it is completely
specified, easy to understand the
operation steps of the algorithm.

9. Conclusion
 1. The block size of 64bits makes

previous RC5 algorithm vulnerable to
the matching ciphertext attack. Where

after encryption of 232 blocks, equal
ciphertexts can be expected and
information is leacked about plaintext.
So that, the proposed algorithm with
256 bits block size is resistant to
matching ciphertext attacks. It is

required to 2128 ciphertext.
 2. As the block size is 64 bits, a

dictionary attack will require 264
different plaintexts to allow the
attacker to encrypt or decrypt arbitrary
message under an unknown key. This
attack applies to any deterministic
block cipher with 128-bit blocks
regardless of its design. So that, the
proposed algorithm with 256 bits

block size is required to 2 256
different plaintexts.

3. From the results that were
obtained in section 4 and after
measuring the strength and the
complexity of the proposed
algorithm. The concluded is that
proposed algorithm increases the
security and the complexity
compared with previous 64 bits
RC5 algorithm.

Reference

[1] Rolf Oppliger “Contemporary

Cryptography” ,Artech House, INC,
2005.

[2] Burwick, D. Coppersmith E. ,

D’Avignon, R. Gennaro, S. Halevi, C.
Jutla, S. M. Matyas, L. O’Connor, M.
Peyravian, D. Safford and N. Zunic,
“Mars a candidate cipher for AES”,
First Advanced Encryption Standard
(AES) Conference, Ventura, CA,
1998.

[3] Dieter Schmidt, "ABC - A Block

Cipher”, Wikipedia the free
Encycleopedia, May 27, 2002.
http://en.wikipedia.org/wiki/ABC_(bl
ock_cipher)

[4] Bruce Schneier and John Kelsey,”

Unbalanced Feistel Networks and
Block Cipher Design”, Counterpane
Systems, 101 East Minnehaha
Parkway, Minneapolis, MN 55419,
2005,
http://fschneier,kelseyg@counterpane
.com

[5] A. Bogdanov1, L.R. Knudsen, G.

Leander1, C. Paar, A. Poschmann,
M.J.B. Robshaw, Y. Seurin, and C.
Vikkelsoe,” PRESENT: An Ultra-
Lightweight Block Cipher”, 2007,
www.ist-ubisecsens.org

[6] Man Young Rhee “Internet Security
Cryptographic, principles, algorithms
and protocols”,John Wiley & Sons
Ltd, Englang,2003.

 7

http://citeseer.ist.psu.edu/schmidt02abc.html
http://citeseer.ist.psu.edu/schmidt02abc.html
http://en.wikipedia.org/wiki/May_27
http://en.wikipedia.org/wiki/2002
http://en.wikipedia.org/wiki/ABC_(block_cipher)
http://en.wikipedia.org/wiki/ABC_(block_cipher)
http://fschneier,kelseyg@counterpane.com/
http://fschneier,kelseyg@counterpane.com/
http://www.ist-ubisecsens.org/

 Proposed 256 bits RC5 Encryption Algorithm
 Using Type-3 Feistel Network

 8

[7] Ross Anderson, Eli Biham, and Lars
Knudsen, “Serpent: A Proposal for
the Advanced Encryption Standard”,
An Internet Survey, 2000.

 http://citeseer.ist.psu.edu
 [8] Shakir M. “A new feedback symmetric

block cipher method”, Ph. D, Thesis
University of Technology, Baghdad,
1997.

[9] John Talbot & Dominic Welsh

“Complexity and Cryptography An
Introduction”, Cambridge University
Press, 2006.

http://citeseer.ist.psu.edu/

 Proposed 256 bits RC5 Encryption Algorithm
 Using Type-3 Feistel Network

Table (1) Avalanche Effect of 256 bits RC5 Algorithm: Change one bit in key

Block
No.

Ciphertext 256 bits in Hexadecimal Avalanche

 1

1800645e835a7b76 4172ab2ed98fcb83 73070ec9fe64df85 b9fd0546d53f434a
C5df66bb9a572a16 8e96fd000850d7c0 df810151ad4a1da2 5b96af7f1146a3bd

143

 2

85b9f44b2304916a 19944d7fed0033d6 d07000cc46e44e0f bed9e36451f0834
80b820e5d8ebbd1 bbefff407a17ffa bb568363bbacbf40 eda67b64e5d5c235

149

3

3bb9971b5a304ad1 5652e47b9eed42e5 858cb2a064e66d0950070037d848b796
976bbf4914fc1ce9 60edf8561516f072 336fbc42a8d30cb5 23da49fd1dfebe8d

153

4

7ca22907e71a4b96 3c3194eb9ffca8ac 68629c037d3a31f7 e45fe240e8027b48
1e875448c6333fd4 f28b121c8e8d1934 a4df953ca6b1064b 96a0cb57c5f4fc93

157

5

F5c9366ac0da7ebd b8ea93750d486612 b6e7054fc6f54334 5b636264cf97549a
3503d33c2cc1ae81 f724cdc1baef5ba8 cb7372fee32955a6 ad8f957fb4a243d2

128

6

D5ba23c7a3ef03d7 16ef51fc56a630ab ced9fdc5b8078607 370532ae64b22774
4111d7dab612c240 39f0f2337d055c12 2ce61f1643be6880 aa6f73dd8691fec8

144

7

fca6872422c5fb62 f17c639e013fd5fb e3127db66936a7d3 dcc6dfbf9d668fc7
df80ec6e3c82abf3 b1fd1afd2e9d2f41 55db1d097e9f5fc3 d14f3e3fff7ccdb1

142

8

6b20fe3650e3fd4 617d9e1585d18b47 22ed4e48db893390 d0b66fe7cfed48ce
b7e77d6104b264ba 1f391acf3ee8504f 152fcbfb68f941c6 e2cd5cd263b678ae

146

9

3695ba4de33c49c7 fcf307576fd68b0a d447863da8f2000f 4d19bc680af798f5
c0159747b7ae0c49 2e29fcf010f194fa 88cb11b166a89a0e f4677b716c8d5e0e

124

10 E704f560cade6fb 4319a31941f31b3 6ee3bea38d118621 697ed3a6a0c9af9
b5b65ee23031e5e3 a9932d51da976ebf 4e555168dd410110 b1258eed248c4103

141

11 cdca8afee63f7a32 a4a52e45f5f00cb2 ad05709cb01e0a62 29cdae4de794265e
4c686f300b4fc783 1a51fbe5e4bd3347 1cbb6e84372abf06 9b04d34c50a272b0

139

Key1 ffffffffffffffffffffffffffffffff

Key2 ffffffffffffffffffffffffffffffe

 9

 Proposed 256 bits RC5 Encryption Algorithm
 Using Type-3 Feistel Network

Table (2) Avalanche Effect RC5 Algorithm: Change one bit in key

Block
No.

Avalanche Block
No.

Avalanche Block
No.

Avalanche Block
No.

Avalanche

1

34

12

35

23

32

34

26

2

27

13

32

24

30

35

28

3

33

14

31

25

32

36

36

4

24

15

32

26

35

37

26

5

32

16

31

27

33

38

32

6

32

17

35

28

33

39

29

7

35

18

31

29

28

40

35

8

29

19

29

30

35

41

29

9

27

20

33

31

35

42

30

10

29

21

29

32

28

43

37

11

34

22

32

33

34

Key1 ffffffffffffffffffffffffffffffff

Key2 fffffffffffffffffffffffffffffffe

Table (3) Time Comparisons of Proposed algorithm and previous RC5 algorithm on a

Pentium I4

Algorithm

Number of

Bytes

Time in Second

Proposed

256 bits RC5

32000 0.031

320000 0.328

3200000 3.093

Previous

64 bits RC5

32000 0.046

320000 0.5

3200000 4.953

 10

 Proposed 256 bits RC5 Encryption Algorithm
 Using Type-3 Feistel Network

Figure (1)The working principle of a symmetric encryption [1]

Figure (2) RC5 Encryption Algorithm [6].

 11

 Proposed 256 bits RC5 Encryption Algorithm
 Using Type-3 Feistel Network

 Figure (3) RC5 Decryption Algorithm [6].

Figure (4) Type-3 Feistel network [2].

 12

 Proposed 256 bits RC5 Encryption Algorithm
 Using Type-3 Feistel Network

 13

 Figure (5) T he Structure of the Proposed Algorithm

 Encryption:

Input: Plaintext = (A, B, C, D) // each of which is 64 bits
 Subkeys S[0…43] of 32 bits
Output: Ciphertext= (A, B, C, D) // each of which is 64 bits
Procedure:
X=Combined S[0] and S[1]

 D= D+ X
 For i = 1 to 20 do
 begin
 D1=Encryption_RC5 (D, S[2*i],S[2*i+1])
 D1=D1<<<13 SS1=combined S[2*i],S[2*i+1]

 SS1=Rotate-right(SS1,13)
 SS2=Rotate-left(SS1,17)
 E (D1, SS1,SS2 L, M, R); // output (L; M; R)
C=C^L
B=B^M

 A=A^R
 (A, B, C, D)= (B, C, D, A)
 end

Figure (6) The Pseudo-code of Encryption for Proposed Algorithm

 Proposed 256 bits RC5 Encryption Algorithm
 Using Type-3 Feistel Network

 Decryption:
 Input: Plaintext = (A, B, C, D) // each of which is 64 bits Subkeys S[0…43] of 32 bits

Output: Ciphertext= (A, B, C, D) // each of which is 64 bits

Procedure:
For i = 1 to 20 do
begin
 (A, B, C, D) = (D, A, B, C)

 SS1=combined S[2*i],S[2*i+1]
 SS1=Rotate-right(SS1,13)

 SS2=Rotate-left(SS1,17)
 E(A,SS1,SS2, L, M,R);

A=Decryption_RC5(A,S[2*i],S[2*i+1]);

 B=B^L
 C=C^M
 D=D^R
end

 Figure (7) The Pseudo-code of Decryption for Proposed Algorithm

 Figure (8) the E-function

 14

	Number of Bytes

