الجامعة : النكنولوجية الكلية : قسم هتسة اللسيطرة والنظم

اسم المحاضر الثلاثئي : شبلي أحمد حميد اللقب اللطلمي : أستاذل مساعد المؤهل اللعلمي : دكتوراه في الهندسة الميكانيكية مكان العمل : الجامعةٌ التكنوّولوجبة"/ قّسم هندسةٌ (النيطرة واللظم

وزارة التعليم العالي والبحث العلمي وزارة التعليم العاليا

جهاز الاشراف والتقويم العلمي

جدول الادوس الالمببوعي

لـ	الإسم
dr.shiblyahmed@yahoo.com OR shiblyhameed@yahoo.com	(البريد الاكثروني
رياضيات	(اسم المـادة
	هقرّ الفصل
نتليم الطلاب القدرة على 1) حل المعادلات الثتفاضلية الخطية مـع مـعامـلات متغيزة بإستخـدام المتسلسلات ذات القّرة 2) التعامل هع نظريات التحليل المركب وتسخيره في جانب نظريات (لسيطرة 3) حل المعادلات الجبرية و التفاضلية بـإسنّخدام (لطرق العددية 4) حل بعض أثنكال المـادلات (الثفاضلية الجزئبية	اهدافـ المـادة
تنتكون هذه المـادة الار السيةٌ من أربيع أجز اء وهي ثلاثّة رئيسبية مكونةّ من أو لا: حلول المعادلات الثتقاضلية (الخطية مـع مـامـلات متغثيرة بإسنتخدام المتسلسلات ذات القلـرة ثانيا: دراسـة نظريات التحليل المركب والثتي تشثمل الإشتّقاق والتكامل ونظريات ال Residues ومـا لها من (التحليلات العددبـة ومـا تنضمنه من طرق لحل العادلات الجبرية وجذور المعادلات وكذلك حلول المعادلات التفاضلبية بالطرق العددبة ومن أنثهر ها طريقة Runge-Kutta و أخير انتعم حل المعادلات الثقاضلية الجزئية وتصنيفها.	اللثفاصيل الاساسية للمـادة
Erwin Kreyszig. "Advanced Engineering Mathematics" 9th ed. 2006.	الكتب (لمنهجية

Wylie C. Ray. "Advanced Engineering Mathematics" 5th ed. 1982.					(المصادر الخارجية
الاهتحان النهائي	المشروع	الامتحانات اليومية	اللمختبر	الفصل الارل\|سي	تقدّات الا
70\%	-	\%10	-	20\%	تهيرات
-					
					معلومـات اضلفية

جمهورية العراق

وزارة التعليم العاليا وزارة التعليم العالي والبحث الللمي

 جهاز الاشراف والتقويم الللمي

جدول الاروس
الانسبوعي

المل\|حظا	المادهة العلميّة	المادهة اللنظرية	اللتاريخ	橘
		Power series solution of ordinary differential equations :Introduction		1
		Power series solution to ordinary points		2
		Power series solution to ordinary points		3
		Legendre polynomial		4
		Legendre polynomial		5
		Power series solution to regular singular points (Frobenius method)		6
		Power series solution to regular singular points (Frobenius method)		7
		Power series solution to regular singular points (Frobenius method)		8
		Bessel's functions (first and second kind)		9

Republic of Iraq
The Ministry of Higher Education \& Scientific Research

University:
College:
Department:
Stage:
Lecturer name:
Academic Status:
Qualification:
Place of work:

Course Weekly Outline

Course Instructor	Dr. Shibly Ahmed Hameed
E_mail	dr.shiblyahmed@yahoo.com OR shiblyhameed@yahoo.com
Title	Math III
Course Coordinator	Type here the name of course coordinator
Course Objective	The main objectives of this material are to learn the students how to solve the ordinary differential equations with variable coefficients using power series method, to study the complex analysis and its use in analyzing the stability of the dynamical systems. In addition studying the material aims to learn the students the methods of solving numerically the algebraic and differential equations and finally to deal with the solution of partial differential equations.
Course Description	Math III consists mainly of four parts; solution to the ordinary differential equations with variable coefficients using power series method, the complex analysis, the numerical technique which it devoted to solve algebraic and differential equations and finally the solution to the partial differential equation using methods similar to ODE.
Textbook	Erwin Kreyszig. "Advanced Engineering Mathematics" 9th ed. 2006.
References	Wylie C. Ray. "Advanced Engineering Mathematics" 5th ed. 1982.

Course Assessment	20%	-	10%	---	70%
General Notes					

Republic of Iraq
 The Ministry of Higher Education \& Scientific Research

University:
College:
Department:
Stage:
Lecturer name:
Academic Status:
Qualification:
Place of work:

Course weekly Outline

week	Date	Topics Covered	Lab. Experiment Assignments	Notes
$\mathbf{1}$		Power series solution of ordinary differential equations :Introduction		
$\mathbf{2}$		Power series solution to ordinary points		
$\mathbf{3}$		Power series solution to ordinary points		
$\mathbf{4}$		Legendre polynomial Legendre polynomial regular singular points (Frobenius method)		
$\mathbf{5}$		Power series solution to regular singular points (Frobenius method)		
$\mathbf{8}$		Power series solution to regular singular points (Frobenius method)		
$\mathbf{9}$		Bessel's functions (first and second kind)		
$\mathbf{1 0}$		Bessel's functions (first and second kind)		
$\mathbf{1 2}$		Complex analysis: introduction		

		method		
$\mathbf{2 8}$		Ordinary Differential Equations: Runge-Kutta methods		
$\mathbf{2 9}$		Partial differential equations: introduction		
$\mathbf{3 0}$		Solution like ordinary differential equations		
$\mathbf{3 2}$	Some applications of dimensional wave equation, one- dimensional heat equation or others	Some applications of PDE like one- dimensional wave equation, one- dimensional heat equation or others	Dean Signature:	

