Note: Answer five questions, each branch 10 marks

Q1/A - Calculate the heat affected zone (HAZ) width Y_z if the $T_p = 700^\circ C$

$E = 20V, I = 200A, V = 5mm/s, T_0 = 25^\circ C, T_m = 1510^\circ C$

$\rho c = 0.0044J/mm^3. ^\circ C, t = 5mm, f_1 = 0.9$

B - How to avoid the reheating cracking, explain its mechanism?

Q2/A - Calculate the strength of precipitation hardening σ_{ppt} hard due to Ashby-Orowan equation, during welding of microalloyed normalized steel, which have the mean-plane-intercept path of precipitation of 200 nm(\bar{x}) and volume fraction of $0.5(\nu_f)$

B - The additional stresses due to phase transformation by welding thermal cycles well interact with the quenching and shrinkage stresses, explain with sketches?

Q3/A - The combination of residual stresses and strains imposed at high temperature may result in distortion of welded parts, explain in sketches?

B - The elastic portion of the stress-strain curve is non-linear due to residual stresses in weld, explain why?

Q4/A - What are the Rosenthal assumption to estimate the heat-flow equations.

B - The particular path of the electrode to avoids cracks at the edges of plates which can constitute high risk cracking area, explain why with sketches?

Q5/A - A plate of 8% Ni steel is welded with an inconel welding wire of composition 85% Ni and 15% Cr, what will be the approximate composition of the final weld if there is 40% dilution?

B - Epitaxial growth in welding from the base metal is likely to occur initial by the development of planar growth front, explain the effect of growth angle (θ) on planar growth?

Q6/A - For heat resistant steel of composition 0.4% C, 1.2% Mn and 0.5% Mo, calculate the preheating temperature for a plate of 100 mm thickness.

B - By dilution and even diffusion process alloying are obtained from metal deposition and air, explain that for welding in sketches?