Compression Test

- A specimen is subjected to a compressive load.
- Carried out by compressing a solid cylindrical specimen between two well-lubricated flat dies.
- The cylindrical specimen’s surface begins to bulge, known as barreling.
• Compression test developed for brittle materials such as ceramics and glass.

• A disk shaped specimen is loaded between two solid platens. Tensile stresses build up perpendicular to the centerline along the disk, fracture begins, and the disk will split vertically.

• Tensile stress from this test can be calculated with the following equation: $\sigma = \frac{2P}{\pi dt}$
P is load at fracture, d is diameter of disk, t is thickness.
Torsion Test

• Torsion test: used for determination of properties in “shear.” Usually performed on a thin tubular specimen.

• Shear stress can be calculated with formula: \(\frac{T}{2\pi r^2 t} \)
 - \(T \) is torque, \(r \) is average radius of tube, \(t \) is thickness of tube.

• Shear strain is calculated with formula: \(\frac{r\Phi}{l} \)
 - \(r \) is radius of tube, \(\Phi \) is angle of twist in radians, and \(l \) is length of tube.
Bend / Flexure Test

- Rectangular specimen supported at its ends.
- Load is applied vertically at 1 or 2 pts.
- The stress at fracture in bending is known as the modulus of rupture, flexural strength, or transverse rupture strength.
Density

• Mass per Unit Volume

\[\rho = \frac{m}{V} \]

– Typical units include
 • kg/m\(^3\)
 • lb/ft\(^3\)

• Specific Gravity
 – Density with respect to water
 – No units
Density

- Strength-to-Weight ratio
 - Specific Strength
 - Tensile strength / density
- Stiffness-to-Weight ratio
 - Specific Stiffness
 - Elastic modulus / density
- Units of length

<table>
<thead>
<tr>
<th>TABLE 3.3</th>
<th>Ratio of Maximum Yield Stress to Density for Assorted Metals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy</td>
<td>Maximum yield stress/density (in. $\times 10^3$)</td>
</tr>
<tr>
<td>Titanium</td>
<td>1250</td>
</tr>
<tr>
<td>Aluminum</td>
<td>800</td>
</tr>
<tr>
<td>Steels</td>
<td>750</td>
</tr>
<tr>
<td>Magnesium</td>
<td>675</td>
</tr>
<tr>
<td>Nickel</td>
<td>550</td>
</tr>
<tr>
<td>Copper</td>
<td>500</td>
</tr>
<tr>
<td>Tantalum</td>
<td>375</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>215</td>
</tr>
<tr>
<td>Lead</td>
<td>5</td>
</tr>
</tbody>
</table>
Specific Heat

- The energy required to raise the temperature of a unit mass by one degree

\[Q = \text{cm} \Delta T \]

- Units of J/kg °K
- Important consideration in the forming or machining operations
Thermal Conductivity

• The rate at which heat flows within and through a material
• Units of W/m °K
• Very low thermal conductivity of Titanium
 – Can result in excessive tool wear during machine operations
Thermal Expansion

- The expansion or contraction of a material when exposed to a thermal cycle
- Units of $\mu\text{M/m °C}$

- Hot rivets are installed through holes in steel plate
- When the rivets cool they contract causing an extremely tight compressive stress on the joint
Electrical, Magnetic and Optical Properties

- **Electrical Properties**
 - **Conductivity**
 - The ratio of the current density to the electric field strength
 - **Dielectric Strength**
 - A material's resistivity to direct electrical current
Electrical, Magnetic and Optical Properties

- **Electrical Properties**
 - Conductors
 - Superconductors
 - Semiconductors
 - Piezoelectric effect
 - A reversible interaction between an elastic strain and an electric field
 - Typical applications include pressure transducers, sensors, and strain gauges
• Magnetic Properties
 – Ferromagnetism
 – Ferrimagnetism
 – Magnetostriction
 • The expansion or contraction of a material when subjected to a magnetic field
 • The principle behind ultrasonic machining equipment
Electrical, Magnetic and Optical Properties

- Optical Properties
 - COLOR
 - darkness
Corrosion Resistance

- Corrosion
 - Typically used to describe metal or ceramic deterioration
 - Similar phenomena occur in plastics
Corrosion Resistance

- Types of corrosion
 - Pitting
 - Inter granular
 - Crevice
 - Galvanic cell
 - Stress-corrosion cracking
 - Selective Leaching
 - Oxidation
 - Passivation
Corrosion Resistance

- **Pitting**
 - Can occur over the entire surface or be local

- **Inter grainy**
 - Occurs along grain boundaries
Corrosion Resistance

• gap
 – Occurs at the interface of bolted or riveted joints

• Galvanic cell
 – Occurs between dissimilar metals when an electrolyte is present
 – Not as common in pure metals or single-phase alloys
Corrosion Resistance

- Stress-corrosion cracking
 - Cold worked metals
- Selective leak
 - Occurs when metalworking fluid attacks specific elements in tool and die materials
• Oxidation
 – A chemical reaction which leaves a small layer of oxidized material on the surface
 – Resists further corrosion
 • Aluminum & Titanium
• Passivity
 – The development of a protective film by chemical reaction
 • Stainless Steel
• http://www.hardwaresquare.com/category/hardware/nails/
• http://www.boeing.com/companyoffices/gallery/images/space/delta_i
v/d4_1st_heavy_24.html
• http://en.wikipedia.org/wiki/Density
• http://www.nyu.edu/pages/mathmol/textbook/density.html
• TEXTBOOK
• http://www.american-carbide.com/EndMills/DHEM.aspx
• http://www.roymech.co.uk/Useful_Tables/Rivets.html
• http://hyperphysics.phy-astr.gsu.edu/hbase/electric/conins.html
• http://en.wikipedia.org/wiki/Oxidation