New Dual Band Dual-Mode Microstrip Patch Bandpass Filter Designs Based on Sierpinski Fractal Geometry

Yaqueen S. Mezaal, and Halil Tanyer Eyyuboğlu
Department of Electronic and Communication Engineering, Cankaya University, Ankara, Turkey
yakeen_sbah@yahoo.com, h.eyyuboglu@cankaya.edu.tr

Jawad K. Ali
Microwave Research Group, Department of Electrical Engineering, University of Technology, Baghdad, Iraq
jawadkali@uotechnology.edu.iq

[This paper has been published at the Proceedings of the Third IEEE International Conference on Advanced Computing and Communication Technologies (ACCT), Haryana, India, 6-7 April, 2013]
New Dual Band Dual-Mode Microstrip Patch Bandpass Filter Designs Based on Sierpinski Fractal Geometry

Yaqueen S. Mezaal, Halil Tanyer Eyyuboglu
Dept. of Electronic and Communication Engineering,
Cankaya University,
Ankara, Turkey
yakeen_sbah@yahoo.com, h.eyyuboglu@cankaya.edu.tr

Jawad K. Ali
Dept. of Electrical and Electronic Engineering,
University of Technology,
Baghdad, Iraq
jawadkali@uotechnology.edu.iq

Abstract— Dual band dual mode Chebyshev microstrip bandpass filter designs are introduced for first time in this paper. The proposed filter designs are based on the use of dual mode square slotted patch microstrip resonator. These filter structures are fractally generated using Sierpinski fractal curve geometry applied to the conventional square microstrip patch from 1st to 2nd iteration levels where the first band designed at fundamental frequencies (5.475, 5.45 and 5.4) GHz for each iteration while the second band (8.925, 9.15, 9.05) GHz for each iteration. These filters have been designed using a substrate with a dielectric constant of 10.8 and thickness of 1.27mm. The performance of filter structures, based on resonators has been evaluated using a full wave based electromagnetic simulator Sonnet software package. Performance simulation results show that these filter structures are compact in addition to good frequency responses and narrow bands gained.

Keywords: Dual band dual mode filter, fractal filter, microwave bandpass filter, filter miniaturization, Sierpinski carpet fractal geometry

I. INTRODUCTION

Compact microstrip narrow bandpass filters are preferred increasingly in modern wireless communication systems because of their low profile and high selectivity [1,2]. Dual-mode resonators have highly desirable features for the bandpass (BPF) design, such as size miniaturization, low radiation loss and ease of design because transmission-line theory and design tools can easily be implemented.

The dual-mode microstrip filters are very important in miniaturization techniques due to their high gained performance and it can be used as a double circuit in single structure as compared to single mode bandpass filter designs when two degenerate modes are coupled to each other by suitable perturbation excitation [3, 4]. Fractal geometries unlike Euclidean geometries have two unique properties: space-filling and self-similarity. These geometries, such as Koch curve, Cantor, Hilbert curve, etc., have been widely used in wide variety of RF and microwave applications especially in designing miniaturized fractal antennas and filters [1,4]. The fractal-shaped devices have spectacular advantages including compactness, narrow band or wide band, multi-band operation and high order harmonics suppression [4,5,6,7].

In this paper, new dual band dual-mode microstrip slotted patch bandpass filter designs for modern wireless communication systems bandpass filter, have been presented. Filter structures are generated using Sierpinski carpet fractal geometry applied to the conventional microstrip square patch filter. The resulting filter structures offer dual narrow bands with adequate Chebyshev frequency responses.

II. THE PROPOSED FRAC TAL SCHEME

The starting pattern for the presented bandpass filter as a fractal is a square patch with a side length L and inserted slotted structures are based on Sierpinski carpet. This fractal geometry, Fig. 1, is a deterministic fractal which is a generalization of the Cantor set into two dimensions. The Sierpinski carpet is constructed analogously to the Sierpinski gasket, but it uses squares instead of triangles. In order to start this type of fractal curve, it begins with a square in the plane, and then divided it into nine smaller congruent squares where the open central square is dropped out. The remaining eight squares are divided into nine smaller congruent squares with, again, each central is dropped out [8,9]. The process can be...
acted provides a description of how much it efficiently fills a space. It is a measure of the prominence of the irregularities when viewed at very small scales [10,11].

A dimension contains much information about the geometrical properties of a fractal. From the property of self-similarity, the fractal dimension \(D \) is defined as [10]:

\[
D = \frac{\log(N)}{\log(1/r)} \tag{1}
\]

where \(N \) is the total number of distinct copies and \(1/r \) is the scale ratio. To find the dimension of the Sierpinski fractal curve, using (1), where \(N = 8 \) segments and \(r = 1/3 \), then the fractal dimension is \(D = 1.892 \).

The ideal fractal structure is obtained by iterating infinite number of times. However, it has been found, practically, that the number of generating iterations is only few before the additional complexities become indistinguishable [12].

![Fig. 1. The generation process of the Sierpinski fractal geometry from 0\(^{th}\) to 3\(^{rd}\) iteration levels](image)

\[
\lambda_g = \frac{c}{f \sqrt{\varepsilon_{\text{eff}}}} \tag{3}
\]

is the guided wavelength, \(c \) is the speed of light and \(\varepsilon_{\text{eff}} \) is effective dielectric constant, \(\varepsilon_{\text{eff}} = (\varepsilon_r + 1)/2 \) [13,14].

The dual-mode bandpass filter response can be obtained via the excitation of the two degenerate modes by I/O feeders and setting the coupling between the two modes by suitable form of perturbation within the resonators [15].

The fractal shape of the proposed patch resonator acts as some perturbation effects to the symmetry of the structure, therefore the field distributions of the degenerate mode will be no longer orthogonal, and they are coupled to each other [15]. On the other hand, the dimensions of the perturbations represented by existing square slots of adopted Sierpinski fractal scheme affect the strength of the coupling between the two degenerate modes of the dual-mode for designed filters.

III. DUAL BAND DUAL MODE FILTER DESIGN

From \(0^{th} \) to \(2^{nd} \) iteration dual-mode microstrip patch bandpass filter structures have been designed with dual narrow bands. It has been supposed that, these filter structures have been etched using a substrate with a dielectric constant of 10.8 , thickness of 1.27 mm and loss tangent of 0.0005 . Two 50 ohm feed lines as input and output (I/O) ports are placed in paralleled manner. The resonator is excited by using a edge spacing coupling method to I/O ports. The strip width values of I/O feeders are 0.4 mm ,0.6 mm and 0.6 mm for each iteration respectively while the edge space value is 0.4 mm for all iterations. For each iteration, the side length of the square patch resonator, \(L=9 \) mm, has been determined as:

\[
L = 0.4\lambda_g \tag{2}
\]

where

It is implied from these figures and tables that the modeled bandpass filters offer two narrow band with adequate performance curves where first band have noticeable narrower bandwidth as compared with \(2^{nd} \) band for all iterations. As can be seen, all of the filter responses are in chebyshev case. Figs.(8-10) show the linear phase response for S11 and S12 with respect to different frequencies.

The use of square slotting principle in \(1^{st} \) and \(2^{nd} \) iteration reduces their fundamental frequency for first bands as compared to \(0^{th} \) iteration. This is due to the application of surface square cuts which increase the current path length, produce a decrease or shifting in the resonance frequency without changing the external dimensions.

The previous filter size designs can be changed to other frequencies required for other wireless communication systems by scaling estimation during modeling according to frequency requirements of the specified applications.

IV. PERFORMANCE EVALUATION

A dual-mode filter structure based on the conventional square patch resonator, and two filter structures based on resonators having the shapes of the first and \(2^{nd} \) iterations have been modeled and analyzed using a full-wave based electromagnetic simulator from Sonnet Software Inc. [16]. This simulator performs electromagnetic analysis using a modified approach of method of moments (MoM). These filter structures are shown in Figs.(2,4,6) respectively. The corresponding simulation results of return loss and transmission responses of these filters are shown in Figs.(3,5,7) respectively. TABLE I and TABLE II show the important performance parameters of the modeled filters.

It is implied from these figures and tables that the modeled bandpass filters offer two narrow band with adequate performance curves where first band have noticeable narrower bandwidth as compared with \(2^{nd} \) band for all iterations. As can be seen, all of the filter responses are in chebyshev case. Figs.(8-10) show the linear phase response for S11 and S12 with respect to different frequencies.

The use of square slotting principle in \(1^{st} \) and \(2^{nd} \) iteration reduces their fundamental frequency for first bands as compared to \(0^{th} \) iteration. This is due to the application of surface square cuts which increase the current path length, produce a decrease or shifting in the resonance frequency without changing the external dimensions.

The previous filter size designs can be changed to other frequencies required for other wireless communication systems by scaling estimation during modeling according to frequency requirements of the specified applications.
TABLE I. SUMMARY OF THE SIMULATED PARAMETERS OF THE MODELED FILTERS FOR FIRST BAND

<table>
<thead>
<tr>
<th>Type</th>
<th>Parameter</th>
<th>K=0</th>
<th>K=1</th>
<th>K=2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Return Loss (dB), S11</td>
<td>-10.515</td>
<td>-10.927</td>
<td>-8.0026</td>
</tr>
<tr>
<td></td>
<td>Insertion Loss (dB), S21°</td>
<td>-0.4039</td>
<td>-0.3687</td>
<td>-0.7492</td>
</tr>
<tr>
<td></td>
<td>Center Frequency, GHz</td>
<td>5.475</td>
<td>5.45</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>Actual Bandwidth (-3dB)</td>
<td>70 MHz</td>
<td>50 MHz</td>
<td>70 MHz</td>
</tr>
</tbody>
</table>

TABLE II. SUMMARY OF THE SIMULATED PARAMETERS OF THE MODELED FILTERS FOR 2nd BAND

<table>
<thead>
<tr>
<th>Type</th>
<th>Parameter</th>
<th>K=0</th>
<th>K=1</th>
<th>K=2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Return Loss (dB), S11</td>
<td>-10.4</td>
<td>-10.23</td>
<td>-10.701</td>
</tr>
<tr>
<td></td>
<td>Insertion Loss (dB), S21°</td>
<td>-0.13</td>
<td>-0.43276</td>
<td>-0.38627</td>
</tr>
<tr>
<td></td>
<td>Center Frequency, GHz</td>
<td>8.925</td>
<td>9.15</td>
<td>9.05</td>
</tr>
<tr>
<td></td>
<td>Actual Bandwidth (-3dB)</td>
<td>190 MHz</td>
<td>140 MHz</td>
<td>140 MHz</td>
</tr>
</tbody>
</table>

V. CONCLUSION

In this paper, new dual band dual-mode microstrip Sierpinski bandpass filters with narrow band chebychev responses have been presented as a new technique for modern wireless communication systems. In this technique, filter structures have been generated from 0 to 2nd iterations of Sierpinski carpet fractal geometry and using the conventional dual-mode square patch resonator as an initiator.

Fig. 1. The layout of the modeled conventional dual-mode square patch microstrip resonator

Fig. 2. The layout of the modeled 2nd iteration dual-mode Sierpinski patch microstrip resonator

Fig. 3. Return loss, S11, and transmission, S21, responses for the conventional square patch microstrip bandpass filter shown in Fig. 2
The modeling and performance of proposed filters have been evaluated using a full-wave based electromagnetic Sonnet simulator with a dielectric constant of 10.8 and thickness of 1.27 mm.

The proposed technique can be used as a design tool for developing multiband compact microstrip bandpass filter for wide applications of communication systems.
Fig. 10. The phase responses of the resulting 2nd iteration fractal microstrip bandpass filter

REFERENCES