Numerical and Experimental Analyses for Effect of Welding Currents on Cooling Rates in (M MAW) Process

Dr. Muna K. Abbass*, Dr. Jalal M. Jalil** & Dr. Abbas Sh. Alwan*

Received on: 7/6/2009
Accepted on: 7/1/2010

Abstract

In this study, Manual Metal Arc Welding (MMAW) is carried out for low carbon steel (AISI 1015) with using electrode (E7018). Direct current straight polarity (DCSP) with the joint geometry of single -V- butt joint and weld one pass are used for plate of thickness 8mm. Experimentally, obtained temperature distribution in fusion zone which is measured by insert the thermocouple in weld metal. Cooling rates are determined for the fusion zone at different welding currents (100, 120 and 140) Amp with constant welding speed at 3.2mm/s. Numerical analysis by using the Control Volume Method (CVM), applied to three-dimensional heat transfer model to determine the cooling rate in fusion zone. Cooling rates models are helping in prediction the microstructure (phases, grain size and volume fraction) and microhardness distribution in weld metal and heat affected zone. The comparison of cooling curves between numerical and experimental work have a good agreement, so that deviation was in range (6% - 21%) which is confirming the capability and reliability of the proposed numerical heat transfer model in manual metal arc welding. The best result for cooling rates when applying mathematical model is at welding current 140Amp.

Keywords: Manual Metal Arc Welding, Cooling Curves, Finite Volume Method.
Introduction

Manual Metal Arc Welding (MMAW) process uses the filler metal as a consumable electrode through the center of the weldment. In this case, when the electrode comes close to the workpiece, an arc is struck between the filler metal and the workpiece, and the filler metal melts and joins two plates by filling metal droplet simultaneously in V-groove of plates. In the present work, the three-dimensional model main effort will be used the application of control volume method (CVM) in the modelling of rapid solidification processes. This method is a suitable for problems where the phase change occurs and moving the interface at a high temperature [1]. Svensson et al [1] (1986) studied experimentally determined cooling curve for the fusion zone of manual metal arc welding for three-dimensional heat flow. The welding was carried out in the flat position, with plate thickness being 20mm, plate length was 330mm and 4mm diameter electrode (ESAB OK 48.00). They found that the microstructure of welds is complex, consisting of allotriomorphic ferrite (α), Widmanstatten ferrite (α_w) and acicular ferrite (α_a). Murugan et al [2] (2001) investigated residual stresses and temperature distribution of AISI 304 stainless steel and low carbon steel welds. They used manual metal arc welding process to weld plate of thickness 6, 8 and 12mm. They found that the temperature range (250 °C and 700 °C) is important with respect to formation of residual stresses in both of stainless steel and low carbon steel welds. Cristiene et al [3] (2002) studied the simulation annealing inverse technique to estimate the temperature history in gas tungsten arc welding (GTAW) workpiece. The test plate was made of stainless steel AISI 304, with dimensions (0.2 m × 0.05 m × 0.004 m). In this case, a two-dimensional model with moving heat source is used, the component of the heat flux input that goes into the workpiece. The results indicate a good agreement between the predicted and the measured temperature. Moneer et al [4] (2006) studied the evaluation and simulation of angular distortion in welding joints. They used shielded metal arc welding (SMAW) process to weld plates of low carbon steel type (A-283-C). Temperature distributions are obtained using finite difference method. In this work transient heat conduction equation is solved using FDM. The most important results are the value of angular distortion increased with the increased current, angular distortion decrease with the increased thickness of plates and the square butt joints have fewer distortions than single-v joints. The aim of this work is to study the effect of welding current on cooling rates, microstructure and microhardness of welded joints, experimentally and numerically by using finite volume method to a three dimensional heat transfer model. A comparison between the experimental and the numerical analyses results.
Experimental Work

1- The Base Metal
Low carbon steel (AISI 10150) is used in this work. It is widely used in pipes and large storage tank structures and other applications. The chemical composition of low carbon steel is shown in Table 1. The mechanical properties of AISI-1015 are shown in Table 2 [5].

2- Plate Preparation
Low carbon steel plates with dimensions of (100 mm × 50 mm × 8 mm) were used in manual arc welding process. The plates were prepared by milling machine from both surfaces and V- single butt joint is designed by machining the specimen to angle (30°) from both sides as shown in Figure 1.

3- Welding Electrodes
The chemical composition of the welding electrode, which is used in this work, is shown in Table 3. According to AWS (A5.1) [5], arc welding specification of electrodes classification, the mechanical properties of electrode (E7018) are shown in Table 4.

4- Welding procedure
Manual arc welding (MMAW) Process is carried out using electrode of diameter 3.2mm. The welding machine used in this work was type (LHI825), Ideal arc DC-600-Lincoln Company, Sweden. Three welding currents are shown in Tables 5. Butt V-single joint is designed with one pass for specimen thickness (8mm) and fixing the thermocouples type (S) in the fusion zone which is connected with readers type (TE9-R10). Recording the values of welding temperatures during each welding process by using video camera (7.2 Mega pixels) with sensitivity (ISO 1000). The welding time is recorded using stop watch.

Tests and Measurements
1- Temperature measurement was carried out by inserting the thermocouples type (S) in the fusion zone (weld metal) and the readings were recorded by video camera. Cooling curves were obtained by drawing the relationship between fusion zone temperature and time.

2- Microstructure test by using optical microscopy, connected with computer.

3- Microhardness test by using digital microhardness tester type (QV-100-Qualitest company-Japan).

4- Grain size and volume fraction were measured by using (J-Image) and (S-Image) programs respectively.

5- X-Ray Diffraction instrument type XRD-6000-Shimadzu, Japan is used to determine the phases obtained in weld metal joints. To determine inter planer spacing distance (d) Bragg law must be used; \(nλ = 2dsinθ \).

Numerical Method
In the present work, the numerical method is Control Volume Method (CVM) which employed heat transfer and predict of phase change with moving interface. This method is base on the cell-centered finite volume (FV) method and conservation principle i.e. energy balance is expressed for the control volume method. The computer flow chart considers the numerical solution by (CV) method program of manual arc welding process as shown in Figure 3.

1- Assumptions
The three - dimensional model for simulation of welding process of
the present work used the following assumptions are
1- The convection and radiation heat transfer were neglected.
2- The fluid movement within the welding joint during melting process was neglected.
3- The energy from the arc welding heat source is applied at a uniform rate.
4- The weld metal droplet (molten) is moving with a constant speed.
5- All the plate boundaries were assumed to be insulated.
6- Symmetry between right and left half of the welded plate was assumed.
7- The heat transfer from the filler metal droplets is taken into account using time-volumetric heat source and filling it instantaneously.
8- The weld physical properties data used in this analysis are summarized in \textbf{Table 6} [6], dependent on the material type.

\section*{2- Initial and Boundary Conditions}
Initial conditions are required only when dealing with transient heat transfer (weld metal) problems in which temperature of material changes with time (Figure 4). The boundary conditions used in the welding boundary conditions are:-
1- Top surface; the weld top surface is assumed to be flat and insulated. The welding velocity component along the X, and Y directions equal to zero, while the velocity of welding along Z is varied with welding parameters.
2- Symmetrical surface; the boundary conditions are defined as zero flux across the symmetrical surface.
3- Other surfaces; all other surfaces are insulated.
4- The initial preheat temperatures before welding is 100°C.

\section*{3- Governing equations}
For most of rapid solidification, there is no clear boundary between the liquid and solid; for this case the enthalpy is more appropriate [6]. A three-dimensional volumetric heat source model is the conservation of energy equation in the enthalpy (E) method is considered in term of enthalpy instead of temperature. The governing equations are based directly on the model[7]:-

\[
\frac{\partial \rho E}{\partial t} = \frac{\partial^2 (\Gamma E)}{\partial X^2} + \frac{\partial^2 (\Gamma E)}{\partial Y^2} + \frac{\partial^2 (\Gamma E)}{\partial Z^2} + P
\]

\[P = \frac{\partial^2 S}{\partial X^2} + \frac{\partial^2 S}{\partial Y^2} + \frac{\partial^2 S}{\partial Z^2} \]

\[
\Gamma = \Gamma(E) , S = S(E)
\]

The energy equation has been transformed into a non-linear equation with a single dependent variable E. The non-linearity of the phase--change problem is evident in the above equation.

In the liquid region, equation (1) reduces to the normal linear energy equation [7].

\[
\frac{\partial \rho E}{\partial t} = \frac{\partial}{\partial X} \left(kX \frac{\partial T}{\partial X} \right) + \frac{\partial}{\partial Y} \left(kY \frac{\partial T}{\partial Y} \right) + \frac{\partial}{\partial Z} \left(kZ \frac{\partial T}{\partial Z} \right)
\]

\[
\frac{\partial \rho E}{\partial t} = \frac{\partial}{\partial X} \left(kX \frac{\partial T}{\partial X} \right) + \frac{\partial}{\partial Y} \left(kY \frac{\partial T}{\partial Y} \right) + \frac{\partial}{\partial Z} \left(kZ \frac{\partial T}{\partial Z} \right)
\]

\[
\frac{\partial \rho E}{\partial t} = \frac{\partial}{\partial X} \left(kX \frac{\partial T}{\partial X} \right) + \frac{\partial}{\partial Y} \left(kY \frac{\partial T}{\partial Y} \right) + \frac{\partial}{\partial Z} \left(kZ \frac{\partial T}{\partial Z} \right)
\]

\[
\frac{\partial \rho E}{\partial t} = \frac{\partial}{\partial X} \left(kX \frac{\partial T}{\partial X} \right) + \frac{\partial}{\partial Y} \left(kY \frac{\partial T}{\partial Y} \right) + \frac{\partial}{\partial Z} \left(kZ \frac{\partial T}{\partial Z} \right)
\]

\[
\frac{\partial \rho E}{\partial t} = \frac{\partial}{\partial X} \left(kX \frac{\partial T}{\partial X} \right) + \frac{\partial}{\partial Y} \left(kY \frac{\partial T}{\partial Y} \right) + \frac{\partial}{\partial Z} \left(kZ \frac{\partial T}{\partial Z} \right)
\]

4- \textbf{Numerical Solution of Weld Metal Deposits}
The welding currents are affected on cooling cycles result from the amount of weld metal deposits. The three- dimensional numerical
heat transfer from the arc welding, additional heat from the metal droplets. The weld metal is moving along V-joint with the electrode is melting and deposits droplet spontaneously in weld joint. The calculation of weld metal deposits per second and filling area of weld metal with different welding current. The following equation depends on sensible heat and latent heat is [8]

\[V^\circ = I \times V \times \eta \times \rho \times \left[C_p \times (T_L - T_S) + h \right] \text{mm}^3/\text{s} \]

\[\ldots (4) \]

Where:
- \(V^\circ \) is the metal volume deposit per second,
- \(I \) is weld current (A),
- \(V \) is voltage (volt),
- \(\eta \) is arc welding efficiency = 0.70,
- \(\rho \) is density = (7860 kg/m³),
- \(C_p \) is specific heat (450 J/kg. °C),
- \(\Delta T \) is temperature difference = \((T_L - T_S) \) and \(h \) is latent heat = \(2.7 \times 10^5 \) J/kg.

The filling area of weld metal deposits, with different welding currents are calculated by,

Deposited Area = \((V^\circ / S) \) mm² \(\ldots (5) \)

Where; \(S \) is travel welding speed (mm/s).

Results and discussion

1- Effect of welding current on cooling rate

The results obtained from the experimental work, increasing welding current leads to increase heat input and decrease cooling rates as shown Figures 5. This result is in good agreement with the result of Andrea Lund back [9].

2- Effect of the Welding Current on Microstructure

The grain boundary ferrite increases when the heat input is increased in the fusion zone region to a temperature well above 910°C and this allowing austenite grains to grow. The high cooling rate and large grain size encourage the ferrite to form side plates from the grain boundaries called Widmanstatten ferrite. This result is in good agreement with result of Yang. Et al [10]. Figure 6a, shows the weld microstructure which is consisted of fine acicular ferrite (AF) and widmanstatten Ferrite (WF). An increase in the welding currents leads to increasing the veins of grain boundary ferrite on prior austenite grain in fusion zone as shown in Figure 6b, c. The results of X-ray is explained the type of phases with different welding current as shown in Figure 7.

3- Effects of Welding Current on the Microhardness

Welding current is the most important factor that effecting on microhardness. The hardness drops with increasing the welding current or heat input which increases the width of weld metal and heat affected regions as shown in Figure 8. An increasing welding current lead to decreasing cooling rates and that effect is decreased the microhardness of welded joint.

4- Simulation Results

The effect of the welding current at constant welding speed on cooling curves, decreases cooling rate with an increase in welding current as shown in Figure 2. These results are in agreement with results of Gareth, et al [12] and Chol, and J.Mazumder [13]. Figure 9 and 10 shows the temperature history at x=0 plane with different welding current and decrease weld metal deposited with decreased welding current.
5- Analysis of Cooling Curves
Equations 6, 7 and 8 represent the models of cooling rate at welding speed 3.2 mm/s, preheat temperatures 100°C and welding current (100, 120 and 140 Amp) respectively. An increase welding current leads to decrease cooling rates. The data was fitted as shown in Figure 2. Using computer program the curves equations are:
\[
\frac{dT}{dt} = - 113.05 t^{(-1.19)} \quad \ldots(6)
\]
\[
\frac{dT}{dt} = - 93.38 t^{(-1.14)} \quad \ldots(7)
\]
\[
\frac{dT}{dt} = - 77.66 t^{(-1.11)} \quad \ldots(8)
\]
Where; \(\frac{dT}{dt} \) is cooling rate and \(t \) is the time (second)

6- Prediction of Microstructure
The effects of welding current on cooling curves, as the welding current is a function of heat input. An increase welding current lead to decrease cooling rates which was represented by equations (6), (7) and (9). These equations are helping to predict the microstructure of weld metal (WM) and (HAZ) regions as shown in Figures 6.

7- Prediction of Ferrite phase's volume fraction
The cooling rates are helping to predicting the volume fraction of phases in weld metal (WM) and heat affected zone (HAZ) as shown in Table 7.

8- Prediction of microhardness
Microhardness decreases with increasing welding current as result from decreasing cooling rates. Table 8 shows the prediction of microhardness in weld metal and heat affected zones with various cooling rates models.

9- Prediction of grain size
The grain size increases with decreasing the cooling rate (increase welding current). These cooling rates help us prediction the grain size of weld metal and heat affected zone as shown in Table 9.

10- Prediction the width of weld metal and heat affected regions
The cooling rate models are helping to estimate the width of WM and HAZ regions depends on microhardness test. Table 10 shows the prediction width of weld metal (WM) and heat affected zones (HAZ) with various welding currents.

11- Experimental verification
The Experimental results are matching with earlier numerical results. Figure 11 shows the comparison between numerical and experimental results of cooling curves at different current. The deviation between numerical and experimental causes the different boundary conditions.

Conclusions
1- Increasing welding current (increase the heat input) leads to a reduction in cooling rate and an increasing the grain size of weld metal and heat affected zone. An increases welding current lead to increases the width of HAZ region and increases the volume fraction and decreases the microhardness.

2- Normalizing heat treatment has clear effect on grain size; it changes the original welded microstructure (columnar structure) to an equiaxial structure of weld metal.

3- The formation of microphase's acicular, wedgekasten and polygonal ferrites (AF, WF, PF) in weld metal are affected by welding currents.
4- The mathematical model of (cooling rate) of welding current at constant welding speed (3.2 mm/s), welding current (140A) and preheat temperature (100°C) for plate thickness (8mm) is [dT/dt = -77.66 * t^{-1.11}].

5- Analysis of cooling rates with various welding currents helps to predict microstructures and microhardness distribution of weld metal and heat affected zone.

6- The result which obtained was a good agreement between the predicted and the measured temperature.

References:
Numerical and Experimental Analyses for Effect of Welding Currents on Cooling Rates in (MMAW) Process

Table (1) Chemical Composition of Low Carbon Steel (AISI-1015)

<table>
<thead>
<tr>
<th>Element</th>
<th>C%</th>
<th>Si%</th>
<th>Mn%</th>
<th>P%</th>
<th>S%</th>
<th>Cr%</th>
<th>Mo%</th>
<th>Ni%</th>
<th>Cu%</th>
<th>Ti%</th>
<th>V%</th>
<th>Fe%</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt%</td>
<td>.163</td>
<td>.252</td>
<td>.442</td>
<td>.018</td>
<td>.047</td>
<td>.081</td>
<td>.02</td>
<td>.02</td>
<td>.053</td>
<td>.006</td>
<td>.01</td>
<td>Rem</td>
</tr>
</tbody>
</table>

Table (2) Mechanical Properties of Low Carbon Steel AISI-1015 [5].

<table>
<thead>
<tr>
<th>AISI - SAE, NO</th>
<th>Condition</th>
<th>Tensile strength (pa)</th>
<th>Yield strength (pa)</th>
<th>Elongation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1015</td>
<td>Hot roll</td>
<td>32148 × 10^3</td>
<td>179244 × 10^3</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Cold roll</td>
<td>365382 × 10^3</td>
<td>303336 × 10^3</td>
<td>20</td>
</tr>
</tbody>
</table>

Table (3) Chemical Composition of Welding Electrode 7018 [13].

<table>
<thead>
<tr>
<th>Element</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
<th>P</th>
<th>S</th>
<th>Cu</th>
<th>V</th>
<th>Ti</th>
<th>Fe%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt%</td>
<td>.095</td>
<td>.37</td>
<td>.88</td>
<td>.043</td>
<td>.019</td>
<td>.009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>.012</td>
<td>-</td>
</tr>
</tbody>
</table>

Table (4) AWS A5.1-69 Mechanical Properties of Arc Welding Electrode [5].

<table>
<thead>
<tr>
<th>AWS Electrode</th>
<th>Tensile min strength (pa)</th>
<th>Yield, min strength (pa)</th>
<th>Elongation in 2 in. (%)</th>
<th>V-Notch Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>E7018</td>
<td>496368 × 10^4</td>
<td>41364 × 10^4</td>
<td>22</td>
<td>20ft/lb-20°F</td>
</tr>
</tbody>
</table>
Table (5) Experimental welding conditions of manual metal arc welding (MMAW), with one pass, electrode E7018 of diameter (3.2 mm) and plate thickness (8mm).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Welding current (A)</th>
<th>Welding speed (mm/s)</th>
<th>Preheat temperature (°C)</th>
<th>Heat input (KJ/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>100</td>
<td>3.2</td>
<td>100</td>
<td>0.48</td>
</tr>
<tr>
<td>C2</td>
<td>120</td>
<td>3.2</td>
<td>100</td>
<td>0.60</td>
</tr>
<tr>
<td>C3</td>
<td>140</td>
<td>3.2</td>
<td>100</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Table (6) Physical Properties for deposition weld metal of electrode (E7018) [6].

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Property</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_L</td>
<td>Liquid density</td>
<td>6980</td>
<td>kg/m³</td>
</tr>
<tr>
<td>ρ_S</td>
<td>Solid density</td>
<td>7860</td>
<td>kg/m³</td>
</tr>
<tr>
<td>k_L</td>
<td>Liquid thermal conductivity</td>
<td>31</td>
<td>W/m.K</td>
</tr>
<tr>
<td>k_S</td>
<td>Solid thermal conductivity</td>
<td>45</td>
<td>W/m.K</td>
</tr>
<tr>
<td>C_P_L</td>
<td>Liquid specific heat</td>
<td>450</td>
<td>J/kg.K</td>
</tr>
<tr>
<td>C_P_S</td>
<td>Solid specific heat</td>
<td>450</td>
<td>J/kg.K</td>
</tr>
<tr>
<td>T_L</td>
<td>Liquids temperature</td>
<td>1500</td>
<td>°C</td>
</tr>
<tr>
<td>T_S</td>
<td>Solids temperature</td>
<td>27</td>
<td>°C</td>
</tr>
<tr>
<td>H</td>
<td>Latent heat</td>
<td>2.7×10^5</td>
<td>J/kg</td>
</tr>
<tr>
<td>T_m</td>
<td>Melting temperature</td>
<td>1483</td>
<td>°C</td>
</tr>
</tbody>
</table>

Table (7) Prediction of ferrite volume fraction in weld metal and heat affected zones with various cooling rates models.

<table>
<thead>
<tr>
<th>Welding Currents (Amp)</th>
<th>Cooling rate models</th>
<th>%</th>
<th>Volume fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WM</td>
<td>HAZ Grain growth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>dT/dt = - 113.05 * t (-1.19)</td>
<td>0.42487</td>
<td>0.55637</td>
</tr>
<tr>
<td>120</td>
<td>dT/dt = - 93.38 * t (-1.14)</td>
<td>0.44256</td>
<td>0.45128</td>
</tr>
<tr>
<td>140</td>
<td>dT/dt = - 77.66 * t (-1.11)</td>
<td>0.49486</td>
<td>0.46365</td>
</tr>
</tbody>
</table>
Table (8) Prediction of microhardness in weld metal and heat affected zones with various cooling rates models.

<table>
<thead>
<tr>
<th>Welding Currents (Amp)</th>
<th>Cooling rate models</th>
<th>Hardness of (WM) HV</th>
<th>Hardness of (HAZ) refinement HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>$dT/dt = - 113.05 \times t (-1.19)$</td>
<td>220</td>
<td>235</td>
</tr>
<tr>
<td>120</td>
<td>$dT/dt = - 93.38 \times t (-1.14)$</td>
<td>210</td>
<td>220</td>
</tr>
<tr>
<td>140</td>
<td>$dT/dt = - 77.66 \times t (-1.11)$</td>
<td>190</td>
<td>210</td>
</tr>
</tbody>
</table>

Table (9) Prediction of grain size in weld metal and heat affected zones with various cooling rates models.

<table>
<thead>
<tr>
<th>Welding Currents (Amp)</th>
<th>Cooling rate models</th>
<th>Grain size(μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WM at center</td>
</tr>
<tr>
<td>100</td>
<td>$dT/dt = - 113.05 \times t (-1.19)$</td>
<td>15.61</td>
</tr>
<tr>
<td>120</td>
<td>$dT/dt = - 93.38 \times t (-1.14)$</td>
<td>16.32</td>
</tr>
<tr>
<td>140</td>
<td>$dT/dt = - 77.66 \times t (-1.11)$</td>
<td>17.26</td>
</tr>
</tbody>
</table>

Table (10) Prediction of Weld Metal (WM) width and Heat Affected Zones (HAZ) width with various cooling rates models.

<table>
<thead>
<tr>
<th>Welding Currents (Amp)</th>
<th>Cooling rate models</th>
<th>Width center of (WM) mm</th>
<th>Width of (HAZ) mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>$dT/dt = - 113.05 \times t (-1.19)$</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>120</td>
<td>$dT/dt = - 93.38 \times t (-1.14)$</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>140</td>
<td>$dT/dt = - 77.66 \times t (-1.11)$</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>
Figure (1) Single V-joint design of work pieces.

Figure (2) Experimental cooling curve at position fusion zone. Welding current 100A, 120A and 140A. Welding Speed 3.2 mm/sec and preheat temperature 100°C.
Figure (3) The computer flow chart by (CVM) program of welding process.
Figure (4) A schematic diagram of the boundary conditions used in this work.

Figure (5) Relationship between welding current and cooling rate and at constant speed.
Figure (6) Microstructure of weld metal butt joint at different welding currents, preheat temp 100 °C and electrode speed 3.2 mm / s.
Figure (7) X-ray diffraction examination of weld metal joint C1.

Figure (8) Effect of welding current on the microhardness at welding speed 3.2mm/s and preheat temperature 100°C.
Figure (9) Program temperature history at x=0 plane (welding speed 3.2mm/s, preheat temperature 100°C, time=0.1s at different welding current.
Figure (10) Program temperature history at x=0 plane (welding speed 3.2mm/s, preheat temperature 100°C, time=0.5s at different welding current.
Figure (11) Comparison between computational and experimental results of cooling curves at fusion zone (FZ). Welding speed 3.2mm/s, preheat temperature 100°C, and different welding current.