Approximate Solution For Linear Fredholm Integro-Differential Equation By Using Bernstein Polynomials Method

Waleeda S. Ali *
Received on:4/1/ 2010
Accepted on: 11/ 3 /2010

Abstract

In this paper, Bernstein polynomials method is used to find an approximate solution for Fredholm integro-Differential equation of the second kind. These polynomials are incredibly useful mathematical tools, because they are simply defined, can be calculated quickly on computer systems and represent a tremendous variety of functions. They can be differentiated and integrated easily.

Keywords: Integro-Differential Equation, and Bernstein Polynomials.

1. Introduction

Several numerical methods for approximating Fredholm integro-differential equation are know.

In this paper, we introduce approximate method for solving linear Fredholm integro-differential equation by using Bernstein polynomials method. Hence, we begin by giving a general introduction to integral equations.

An integral equation is generally defined as an equation which involves the integral of an unknown function.

A linear integral equation is an integral equation which involves a linear expression of the unknown function.

The Fredholm integral equations are integral equations divided into two group, referred to as Fredholm integral equations of the first or the second kind.

They have the following general expression[1][2][6]:

\[y(x) = f(x) + \int_{\Omega} k(x,t) y(t) dt \]

where \(k(x,t) \) and \(f(x) \) are known function. \(k(x,t) \) is called the kernel of integral equation. \(Y(x) \) is the function to be determined. When \(\Omega \) is finite interval \([a,b] \subseteq R \) in this case, the fredholm integral equations of first and second kind will respectively have the following expressions:

* Agriculture College, University of Baghdad / Baghdad
Approximate Solution for linear Fredholm Integro-Differential Equation by Using Bernstein Polynomials method

The Bernstein polynomial of degree (n) can be defined by blending together two Bernstein polynomials of degree (n-1). That is, the nth degree Bernstein polynomial can be written as, [4].

\[B^n_k(t) = (1-t)B^{n-1}_k(t) + tB^{n-1}_{k-1}(t) \]

Bernstein polynomials of degree (n) can be written in terms of the power basis. This can be directly calculated using the equation (5) and the binomial theorem as follows, [4].

\[B^n_k(t) = \sum_{i=0}^{k} (-1)^{i-k} \binom{n}{i} \binom{n-i}{k} t^i (1-t)^{n-i-k} \]

Where the binomial theorem is used to Expand \((1-t)^{n-k}\).

The derivatives of the nth degree Bernstein polynomials are polynomials of degree (n-1)

\[\frac{d}{dt} B^n_k(t) = n \left(1-t \right)^{n-k-1} \]

\[= n \left(B^{n-1}_k(t) - B^{n-1}_{k-1}(t) \right) \]

\[0 \leq k \leq n \]

3. A Matrix Representation for Bernstein Polynomials

In many applications, a matrix formulation for the Bernstein polynomials is useful. These are straightforward to develop if only looking at a linear combination in terms of dot products. Given a polynomial written as a linear combination of the Bernstein basis functions [3][4].

\[B(t) = c_0B^n_0(t) + c_1B^n_1(t) + c_2B^n_2(t) + \ldots + c_nB^n_n(t) \]

It is easy to write this as a dot product of two vectors
Approximate Solution for linear Fredholm Integro-Differential Equation by Using Bernstein Polynomials method

\[
B(t) = \begin{bmatrix}
B_0(t) & B_1(t) & B_2(t) & \ldots & B_n(t)
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
\vdots \\
c_n
\end{bmatrix}
\]

which can be converted to the following form:

\[
B(t) = \begin{bmatrix}
b_0 & 0 & 0 & \ldots & 0 \\
b_1 & b_1 & 0 & \ldots & 0 \\
b_2 & b_2 & b_2 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
b_m & b_m & b_m & \ldots & b_m
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
\vdots \\
c_n
\end{bmatrix}
\]

…(9)

where \(b_m\) are the coefficients of the power basis that are used to determine the respective Bernstein polynomials, we note that the matrix in this case lower triangular.

The matrix of derivatives of Bernstein polynomials

\[
B'(t) = \begin{bmatrix}
b_{00} & 0 & 0 & \ldots & 0 \\
b_{10} & b_1 & 0 & \ldots & 0 \\
b_{20} & b_2 & b_2 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
b_{mn} & b_m & b_m & \ldots & b_m
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
\vdots \\
c_n
\end{bmatrix}
\]

…(10)

And

\[y'(x) = f(x) + \int_{a}^{b} k(x,t)y(t)dt \quad \forall [a, b]\]

… (11)

Let

\[y(t) = B(t) = \begin{bmatrix}
B_0(t) & B_1(t) & B_2(t) & \ldots & B_n(t)
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
\vdots \\
c_n
\end{bmatrix}
\]

by using equation (9)

\[y'(t) = n(B_n^{n-1}(t) - B_n^{n-1})\]

by using equation (7)

A applying the Bernstein polynomials method for equation (11), we get the following formula.

\[
\begin{bmatrix}
0 & 1 & B_{n-1}^{n-1}(t) & B_{n-2}^{n-1}(t) & \ldots & B_0^{n-1}(t)
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
\vdots \\
c_n
\end{bmatrix}
\]

by using equations (10) and (10a), which can be converted to the following form:

4. Solution of Fredholm Integro-differential Equation with Bernstein Polynomials

In this section Bernstein polynomials to find the approximate solution for Fredholm integro-differential equation, will be introduced [4][5][7]. Let us reconsider the Fredholm integro-differential equation of the second kind in equation (4).
Approximate Solution for linear Fredholm Integro-Differential Equation by Using Bernstein Polynomials method

\[
\begin{bmatrix}
 b_{00} & 0 & L & 0 \\
 b_{01} & b_{11} & L & 0 \\
 b_{02} & b_{21} & L & 0 \\
 b_{0n} & b_{n1} & b_{nn} & c_n
\end{bmatrix}
\begin{bmatrix}
 0 \\
 1 \\
 2t \\
 nt^p
\end{bmatrix}
= \begin{bmatrix}
 c_0 \\
 c_1 \\
 c_2 \\
 c_n
\end{bmatrix}
\]

Now to find all integration in equation (13).

Then in order to determine \(c_0, c_1, \ldots, c_n\), we need \(n\) equations;

Now Choice \(x_i, i = 1, 2, 3, \ldots, K\) in the interval \([a, b]\), which gives \((n)\) equations.

Solve the \((n)\) equations by Gauss elimination to find the values \(c_0, c_1, \ldots, c_n\).

The following algorithm summarizes the steps for finding the approximate solution for the second kind of linear Fredholm integro-differential equation.

5. Algorithm (BPM)

Input: \(f(t), k(t, \xi), y(s), a, b\),

Output: polynomials of degree \(n\)

Step1:
Choice \(n\) the degree of Bernstein polynomials

\[B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}\] for \(i = 0, 1, 2, ..., n\)

Step2:

Put the Bernstein polynomials in linear Fredholm integro-differential equation of second kind.

\[
\int_a^b k(x,t) \left[\frac{d}{dt} \right]^n f(x) dt = \int_a^b k(x,t) \left[\frac{d}{dt} \right]^n \left[\frac{d}{dt} \right]^n y(t) dt
\]

Step3:
Compute

\[
\int_a^b k(x,t) \left[\frac{d}{dt} \right]^n f(x) dt
\]

Step4:
Compute \(c_0, c_1, \ldots, c_n\), where \(x_i, i = 1, 2, 3, \ldots, K\) in \([a, b]\)

End:
Example:
Consider the following linear Fredholm integro-differential equation of the second kind:

\[y'(x) = xe^{-x} + e^{-x} - x + \int_0^1 xy(t)dt \]

With initial condition \(y(0) = 0 \), and with the exact solution \(y(x) = xe^x \).

Now to derive the solution by using the Bernstein polynomials method, we can use the following scheme:

When Bernstein polynomials algorithm is applied both sides in example. And choice the degree of Bernstein polynomials \(n=2 \), we get:

\[-2x_0(1-x)+2x_1(1-x)-2x_2x+2x_2x = xe^x + e^{-x} - x + \int_0^1 \left[c_0(x(1-t)^2 + 2xt(1-t)+c_2t^2) \right] dt \]

Next
\[-2x_0(1-x)+2x_1(1-x)-2x_2x+2x_2x = xe^x + e^{-x} - x + \int_0^1 \left[2c_0(t-x)^2 + 2c_1(x(1-t)^2 + c_2t^2) \right] dt \]

And after performing the integration.
\[-2c_0(1-x)+2c_1-4c_1x+2c_2x = xe^x + e^{-x} - x + \left(\frac{c_0}{3} + \frac{c_1}{3} + \frac{2c_2}{3} \right)x - \frac{2}{3}c_1 + c_2 \]

\[(-2 + \frac{2}{3}x)c_0 + (\frac{8}{3} - 5x)c_1 + (\frac{5}{3}x)c_2 = xe^x + e^{-x} \]

Then in order to determine \(c_0, c_1 \), and \(c_2 \), we need three equation:

Now Choice \(x_i, i = 1, 2 \) in the interval \([0, 1]\), with substation in the initial condition in the equation \(y'(x) = -2ax_0(1-x)+2a_1-4c_1x+2c_2x \) which gives three equations.

Solve the three equation by Gauss elimination to find the values \(c_0, c_1 \), and \(c_2 \).

To get
\[c_0 = 0 \]
\[c_1 = -0.1839 \]
\[c_2 = 2.4045 \]

Then the solution of linear Fredholm integro-differential equation of the second kind is:
\[y(x) = (c_0 - 2c_1 + c_2)x^2 - 2((c_0 - c_1)x + c_0 \]

\[y(x) = 2.7723x^2 - 0.3678x \]

Approximated solution for some values of (x) by using Bernstein polynomials method and exact values \(y(x) = xe^x \) of Example, depending on least square error (L.S.E),

\[Error = \sum_{k=1}^m \left(y_{Exact}(x) - y_{Approximate}(x) \right)^2 \]

are \(x \) presented in Table(1) and figure(1).

6. Conclusions
Integro-differential equations are usually difficult to solve analytically. It is required to obtain the approximate solutions.

In this paper presents the use of the Bernstein polynomials method, for solving linear Fredholm integro-differential equation of the second kind. From solving numerical example the following points have been identified:
1. This method can be used to solve the all kinds of linear Fredholm integro-differential equation.

2. It is clear that using the Bernstein polynomial basis function to approximate when the n^{th} degree of Bernstein polynomial is increases the error is decreases.

We can see also from Figure(1) that the approximation is good. And when comparisons approximation solution with exact solution that the Bernstein polynomial method is very effective and convenient.

References:
Approximate Solution for linear Fredholm Integro-Differential Equation by Using Bernstein Polynomials method

Table (1) The results of Example using (BPM) algorithm.

<table>
<thead>
<tr>
<th>T</th>
<th>Exact (y(t))</th>
<th>Approximation (y(t)) of degree(n=1)</th>
<th>Approximation (y(t)) of degree(n=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.1105</td>
<td>0.8873</td>
<td>-0.0091</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2443</td>
<td>1.7746</td>
<td>0.0373</td>
</tr>
<tr>
<td>0.3</td>
<td>0.4050</td>
<td>2.6620</td>
<td>0.1392</td>
</tr>
<tr>
<td>0.4</td>
<td>0.5967</td>
<td>3.5493</td>
<td>0.2964</td>
</tr>
<tr>
<td>0.5</td>
<td>0.8244</td>
<td>4.4366</td>
<td>0.5092</td>
</tr>
<tr>
<td>0.6</td>
<td>1.0933</td>
<td>5.3239</td>
<td>0.7773</td>
</tr>
<tr>
<td>0.7</td>
<td>1.4096</td>
<td>6.2112</td>
<td>1.1010</td>
</tr>
<tr>
<td>0.8</td>
<td>1.7804</td>
<td>7.0986</td>
<td>1.4800</td>
</tr>
<tr>
<td>0.9</td>
<td>2.2136</td>
<td>7.9859</td>
<td>1.9145</td>
</tr>
<tr>
<td>1</td>
<td>2.7183</td>
<td>8.8732</td>
<td>2.4045</td>
</tr>
</tbody>
</table>

\[\text{L.S.E} = \sum_{t=1}^{10} (y_{\text{Exact}}(t) - y_{\text{Approximation}}(t))^2 = 170.244 + 0.790595 \]
Approximate Solution for linear Fredholm Integro-Differential Equation by Using Bernstein Polynomials method

Figure (1) Approximation and Exact solution of linear Fredholm integro-differential equation of example