EXP. NO.6
FILTERS
Low –pass filter (integrator R.C. circuit)

OBJECT:
To steady the behavior and response of R.C. Circuit.

APPARTUS:
1- Signal function generator
2- Oscilloscope
3- Resisters, capacitors)
4- A.V.O. meter.

THEORY:
Consider the circuit shown in fig. (1)
If the output is taken off the capacitor, as shown in Fig. (1), it will respond as a low-pass filter.

At \(f = 0 \) Hz,
\[
X_C = \frac{1}{2\pi fC} = \infty \Omega
\]

and the open-circuit equivalent can be substituted for the capacitor, as shown in Fig. (2), resulting in \(V_o = V_i \).
EXP. NO.6
FILTERS

Low –pass filter (integrator R.C. circuit)

At very high frequencies, the reactance is:

\[X_C = \frac{1}{2\pi fC} \approx 0 \Omega \]

and the short-circuit equivalent can be substituted for the capacitor, as shown in Fig. (3), resulting in \(V_o = \) zero V.

A plot of the magnitude of \(V_o \) versus frequency will result in the curve of Fig. (4).

For filters, a normalized plot is employed more often than the plot of \(V_o \) versus frequency of Fig. (4).
Low-pass filter (integrator R.C. circuit)

Normalization is a process whereby a quantity such as voltage, current, or impedance is divided by a quantity of the same unit of measure to establish a dimensionless level of a specific value or range.

A normalized plot in the filter domain can be obtained by dividing the plotted quantity such as V_o of Fig. (4) with the applied voltage V_i for the frequency range of interest. Since the maximum value of V_o for the low-pass filter of Fig. (1) is V_i, each level of V_o in Fig. (4) is divided by the level of V_i. The result is the plot of $A_v = V_o/V_i$ of Fig. (5). Note that the maximum value is 1 and the cutoff frequency is defined at the 0.707 level.

At any intermediate frequency, the output voltage V_o of Fig. (1) can be determined using the voltage divider rule:

$$V_o = \frac{X_C \angle -90^\circ V_i}{R - jX_C}$$

or

$$A_v = \frac{V_o}{V_i} = \frac{X_C \angle -90^\circ}{R - jX_C} = \left(\frac{X_C \angle -90^\circ}{\sqrt{R^2 + X_C^2}} \right) \left\{ \tan^{-1} \left(\frac{X_C}{R}\right) \right\}$$

and

$$A_v = \frac{V_o}{V_i} = \frac{X_C \angle -90^\circ}{\sqrt{R^2 + X_C^2}} \angle -90^\circ + \tan^{-1} \left(\frac{X_C}{R}\right)$$
EXP. NO.6
FILTERS

Low –pass filter (integrator R.C. circuit)

The magnitude of the ratio V_o/V_i is therefore determined by

$$A_v = \frac{V_o}{V_i} = \frac{X_C}{\sqrt{R^2 + X_C^2}} = \frac{1}{\sqrt{\left(\frac{R}{X_C}\right)^2 + 1}}$$

and the phase angle is determined by

$$\theta = -90^\circ + \tan^{-1} \frac{X_C}{R} = -\tan^{-1} \frac{R}{X_C}$$

For the special frequency at which $X_C = R$, the magnitude becomes

$$A_v = \frac{V_o}{V_i} = \frac{1}{\sqrt{1+1}} = \frac{1}{\sqrt{2}} = 0.707$$

which defines the critical or cutoff frequency of Fig. (5). The frequency at which $X_C = R$ is determined by

$$\frac{1}{2\pi f_c C} = R$$

and

$$f_c = \frac{1}{2\pi R C}$$

The impact of Eq. (8) extends beyond its relative simplicity. For any low-pass filter, the application of any frequency less than f_c will result in an output voltage V_o that is at least 70.7% of the maximum. For any frequency above f_c, the output is less than 70.7% of the applied signal.

Solving for V_o and substituting $V_i = V_i < 0^\circ$ gives
EXP. NO.6
FILTERS

Low-pass filter (integrator R.C. circuit)

\[V_o = \left[\frac{X_C}{\sqrt{R^2 + X_C^2}} \right] \angle \theta \]
\[V_i = \left[\frac{X_C}{\sqrt{R^2 + X_C^2}} \right] \angle \theta \]
\[V_o \angle 0^\circ \]

and

\[V_o = \frac{X_C V_i}{\sqrt{R^2 + X_C^2}} \angle \theta \]

The angle \(\Theta \) is, therefore, the angle by which \(V_o \) lag \(V_i \). This angle change from 0 to \(90^\circ \), if the input voltage is sine wave with angle =0 then the output voltage become sine wave with angle =\(90^\circ \) (i.e. cosine wave) \(V_{in} = A \sin(\omega t) \)

\[V_o = B \sin(\omega t - 90^\circ) = -B \cos(\omega t) \]

For this reason, this circuit called integrator.

Since \(\Theta = -\tan^{-1}(R/XC) \) is always negative (except at \(f = 0 \) Hz), it is clear that \(V_o \) will always lag \(V_i \), leading to the label lagging network for the network of Fig. (1).

At high frequencies, \(XC \) is very small and \(R/XC \) is quite large, resulting in \(\Theta = -\tan^{-1}(R/XC) \) approaching \(-90^\circ\). At low frequencies, \(XC \) is quite large and \(R/XC \) is very small, resulting in \(\Theta \) approaching \(0^\circ \). At low frequencies, \(XC \) is quite large and \(R/XC \) is very small, resulting in \(\Theta \) approaching \(0^\circ \).

At \(XC = R \), or \(f = f_c \), \(-\tan^{-1}(R/XC) = -\tan^{-1}1 = -45^\circ \).

A plot of \(\theta \) versus frequency results in the phase plot of Fig. (6).
EXP. NO.6
FILTERS
Low –pass filter (integrator R.C. circuit)

fig.(6) Angle by which Vo lags Vi.

PROCEDURE

1-Connect the cct. Shown in fig .(7):

![Diagram of the circuit](image)

very the frequency and measure Vo for every setting of (f). Tabulate your result as in table (1)

<table>
<thead>
<tr>
<th>F(Hz)</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1K</th>
<th>1.5K</th>
<th>5K</th>
<th>10K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vo</td>
<td></td>
</tr>
<tr>
<td>Vo/Vin</td>
<td></td>
</tr>
</tbody>
</table>

Table (1)

2- using the oscilloscope to measure the phase shift θ for each frequency setting

3- apply a sine-wave voltage at the input terminals of the cct. of fig. (7).with V_in=10V_{p.p.}

For the values of (f , R, C) as in the table (2). **Draw Vo & V_{in}**
EXP. NO.6
FILTERS
Low –pass filter (integrator R.C. circuit)

<table>
<thead>
<tr>
<th>f</th>
<th>R</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1KHZ</td>
<td>1KΩ</td>
<td>0.15µF</td>
</tr>
<tr>
<td>500HZ</td>
<td>10KΩ</td>
<td>0.1µF</td>
</tr>
<tr>
<td>50 HZ</td>
<td>1KΩ</td>
<td>0.001µF</td>
</tr>
</tbody>
</table>

Table (2)

REQUIREMENTS:
1- draw a graph between the gain \(A=V_o/V_{in} \) versus frequency, find \(f_c \) and
 Compare it with that obtained from equation (8).
2- draw a graph between\((\theta) \) and \((f) \), from the graph find \(f_c \) at \(\theta = 45 \) and compare it
 with that obtained from equation (8).

DISCUSSION:

a. Sketch the output voltage \(V_o \) versus frequency for the low-pass R-C
 filter of Fig. (8).

\[R \quad 1\, kΩ \]
\[+ \quad - \]
\[V_i = 20\, V \angle 0° \]
\[C \quad 500\, pF \]
\[V_o \]

Fig.(8)
b. Determine the voltage \(V_o \) at \(f = 100\, kHz \) and 1 MHz, and compare
EXP. NO.6
FILTERS
Low –pass filter (integrator R.C. circuit)

the results to the results obtained from the curve of part (a).
c. Sketch the normalized gain $A_v = \frac{V_o}{V_i}$.