University of Technology Department of Machanical Engineering Final Examination 2015/2016 Subject: Mechanics I Division: All Divisions Examiner(s): Dr. Ali Raad & Dr. Sadeq Hussein Year: 1st Exam Time: 3 Hrs. Date: 13/06/2016 1. Answer Four Questions Only. 2. All Questions Carrying Equal Marks. Q_1 : Represent the resultant of the force system acting on the pipe assembly by a single force R at A and a couple M. Q_2 : Calculate the magnitude of the force supported by the pin \boldsymbol{B} for the bell crank loaded and supported as shown. Fig.Q1 Fig.Q2 Q_3 : Compute the force in each member of the loaded cantilever truss by the *method of joint*. Q_4 : Determine the coordinates of the centroid of the shaded area. The plate center is M. Q₅: The force P is applied to the 200 N weight of block A which rests atop the 100N crate B. The system is at rest when P is first applied. Determine what happens to each body if (a) P = 60 N, (b) P = 80 N, and (c) P = 120 N. Fig.Q3 Fig.Q4 Fig.Q5 # Best wishes # University of Technology Department of Machanical Engineering Final Examination 2014/2015 Subject: Mechanics I Division: All Divisions Examiner(s): Dr. Ali Raad & Dr. Sadeq H. Bakhy Year: 1st Exam Time: 3 Hrs. Date: 8/6/2015 1. Answer Four Questions Only. 2. All Questions Carrying Equal Marks. Q_1 : The rigid pole and cross-arm assembly is supported by the three cables shown. A turnbuckle at D is tightened until it induces a tension T in CD of $1.2 \, kN$. Express T as a vector and determine the vector expression for the moment of the $1.2 \, kN$ tension (a) about point O and (b) about the pole z-axis. Q₂: The uniform beam has a mass of 50 kg per meter of length. Compute the reactions at the support O. The force loads shown lie in a vertical plane. Q₃: Determine the force in member GK of the loaded symmetrical truss by using section method. Q4: Determine the moments of inertia of the **Z-section** about its centroidal x_o - and y_o -axes. Q5: The three flat blocks are positioned on the 30° incline as shown, and a force P parallel to the incline is applied to the middle block. The upper block is prevented from moving by a wire which attached it to the fixed support. The coefficient of static friction for each of the three pairs of mating surfaces is shown. Determine the maximum value which P may have before any slipping takes place. Fig.Q3 Fig.Q4 Fig.Q5 # **Best wishes** #### University of Technology Department of Machines and Equipment Engineering Final Examination 2013/2014 Year: First Exam time: 3 Hrs. Date: 7 / 06 / 2014 Subject: Mechanics I Division: General Mechanical Examiner(s): Dr. Ali Raad & Lecturer. Amir A. Kh. ## **Answer Four Questions Only** Q1: The rectangular plate is tilted about its lower edge by a cable tensioned at a constant 600 N. Determine the moment of this tension about the lower edge AB of the plate for the range $0 \le \theta \le 90$. (25 marks) Q2: Replace the 10-kN force acting on the steel column by an equivalent force-couple system at point 0. This replacement is frequently done in the design of structures. (25 marks) ## Q3: Answer A or B only: (25 marks) A. Determine the x and y-coordinates of the centroid of the shaded area. B. Determine the distance from the bottom of the base plate to the centroid of the built-up structural section shown. Q4: Determine the magnitude T of the tension in the supporting cable and the magnitude of the force on the pin at A for the jib crane shown. The beam AB is a standard 0.5-m I-beam with a mass of 95 kg per meter of length. (25 marks) Q5: Determine the force in each member of the loaded truss. Make use of the symmetry of the truss. (25 marks) Best wishes # University of Technology Department of Machines and Equipments Engineering Final Examination 2012/2013 Subject: Mechanics (1) Branch: All Examiner: Dr. A.Al - Beiruti & Dr. A. Raad Class:1st year Date: 8 /6 /2013 ## **Answer Five Questions Only** ## All Questions Carry Equal Marks Q1: Find the resultant R of the three forces and two couples shown in figure (1) and show where it cuts the x-axis. Q2: Replace the system shown in fig (2) by a wrench resultant and find the coordinates of point P in the Y-Z plane through which the wrench resultant will pass. Q3: The uniform bar AB with end rollers shown in fig (3) has a mass of 30Kg and is supported by the horizontal and vertical surfaces and by the wire AC. Calculate the tension T in the wire and the reactions at rollers A and B. Q4: Find the resultant R of the force system shown in fig (4), move it to point O with its moment M. Q5: The uniform 7-m steel shaft has a mass of 200Kg and is supported by a ball-and –socket joint at A in the horizontal floor. The ball end B rests against the smooth vertical walls as shown. Compute the force exerted by the walls and the floor on the ends of the shaft .Fig(3). Q6: Calculate the forces in members FG, EG and GD for the truss shown in fig (6). Note: Figure of each question is required in your answers. **GOOD LUCK** Fig Q5 Fig Q6 #### University of Technology Department of Machines and Equipment Engineering First Term Examination 2012/2013 Subject: Engineering Mechanics/ Statics Division: All divisions Examiners: Dr. A. Al-Beiruti & Dr. A. Raad Year: First year Exam Time: 11/2 hrs. Date: 20/1/2013 ## Answer (THREE) Questions Only - Q1: Find angle θ that makes the resultant R of the two forces shown in fig. (1) equals to 1000N. Also find angle β between **R** and the horizontal. - Q2: In fig. (2), express the tension in the chain AB T=100N as a force vector. Find also the coordinates of point D. - Q3: If the resultant of the concurrent force system shown in fig. (3) is equal to zero, find the tension in cables AC and BC. - Q4: In fig. (4), find the components of the - (a) 1900N force on the x, y and z axes, - (b) 900N force on the x, y and z axes. ## University of Technology Machines and Equipment Engineering Department Final Examination 2011-2012/ first attempt Subject: Engineering Mechanics (1) Statics Branch: Mechanical Engineering Examinar: Dr. A. Al.Beiruti Dr. Ibtesam Mahdi Class: First year Time: 3 Hours Date: 31/5/2012 # Answer Five Questions Only # All Questions Carry Equal Marks - Q1- Replace the three forces and couple by an equivalent force R at A and a couple M. Find M and the magnitude of R. Fig(1). - Q2- Replace the force system shown in fig(2) by a wrench resultant and find the coordinates of point (P) in the y-z plane through which the resultant force of the wrench will pass. - Q3- The uniform ventilator door shown in Fig(3) has a mass of 200Kg and is hinged at the corners A and B of its upper edge. The door is held open in a horizontal position by the wire C to D. Find the tension in the wire and the forces at the hinge pins at A and B. - **Q4** Find the resultant **R** of the force system shown in Fig (4), move it to point **O** with its moment **M**. - Q5- Calculate the forces in members DK,KL and CL for the truss shown in fig(5). - Q6-The frame shown in Fig(6) supports the 400kg ,find the horizontal and vertical components of all forces acting on each of the members. - Q7- Find the centriod of the shaded area shown in Fig(7) Note: Figure of each question is required in your answers. **GOOD LUCK** \sim \leftarrow Fig Q5 A.7 # University o Pechnology Mechanical Engine ring Department Final Examinat (2n 2010/2011 Desk Frincepa Subject: Engineering Mechanics I st Year Examiner(s): Dr.Ahmad Al-Beiruti Exam Time: Three Hours Date:9/6/2011 Q1: Find the resultant R of the force sysm shown in figure (1), show its position with respect to point O. Show also where R cuts the X-axis . Q2: Bar AC supports two 400 N loads as shown in fig (2). Rollers at A and C rest against smooth surfaces and cable BD is attached at B. Find (a) the tension in cable BD. (B) the reactions at A and C. Q3: Find the projection of the force F = 100 N in the chain AB shown in fig (3) about a line joining point C and D. Q4: Find the resultant R of the three forces and a couple shown in fig (4), move it to point A with its moment . Q5: In the truss shown in fig (5) , find the forces in members AB , FE and BE . Q6: Find the centroid of the shaded area shown in fig (6). Note: Figures of each question are required in your answers Fig Q1 Fig Qs Fig Q5 Fig Q2 Fig Q4 المادة : الميكانيك الهندسي المرحلة: الأولى #### **Answer Five Questions Only** - Q1:If the Resultant of the two Forces shown in Fig (1) is 1000 N. Find: the angle O. Also find the angle between the resultant R and the horizontal. - Q2: Find the resultant of the Force System shown in Fig (2) and find its position with respect to point A. - Q3:In the equilibrium position shown in fig (3), find the distance (x) and the reactions at A & B. - Q4:In Fig (4), Find the component of the Force F=340 N along the line AB, also find the angle O between F and the component. - Q5:In Fig (5), replace the two Forces and single couple by a wrench and find the coordinates of point P in the y-z plane through which the wrench will Pass. - Q6: The uniform 7m steel shaft has a mass of 200 Kg and is supported by a ball & socket joint at A in the horizontal floor. B is a ball end resting against the smooth vertical walls as shown in Fig (6), Find the Forces at A & B. - Q7: In the truss shown in Fig (7) Find the Forces in members AB, BC & DE. | | - | - | |--|---------------------------|---| | الزمن: 3 ساعات | امتحان الدور كالاون للعام | الجامعة التكنولوجية | | القاريخ : 2009/6/1
الممتحن : لجلة الميكانيك الهندسي | 20년)/2008
○ | أأقسم هندسية المكانن والمعدات
الرامة الإرامات المائد | | | 00 | المادة والميكانيك الهندسي
أ | | | | | # Answer five uestions Only - Q1: Find the resultant R of the two forces shown in Fig (1) .Express R as a force vector in terms of i & j on the x-and y axes . Find also the angle between R and the x-axis . - Q2: If the projection of the force F on the line BD is $75\,N$, find the magnitude of the force F .Fig (2) . - Q3: The uniform bar AB shown in Fig (3) has a mass of 50 Kg and supports the 200 Kg load at A.Calculate the tension T and the reaction forces at B. - Q4: Replace the force system shown in Fig (4) by a wrench resultant and find the coordinates of point P in the y-z plane through which the wrench resultant will pass. - Q5: The uniform horizontal bar shown in Fig (5) has a mass of 240 Kg and is Supported by the two cables at B and C and by the ball and socket joint at O. Calculate the tension T in cable AC and the reaction at O. - Q6: In the truss shown in Fig (6),calculate the force in members AB, CD, BG fig (6) فسسم هندة المفائخ والمعوات را لحامعة التكنولوهم 2004 Uny Statics المرحله: الايرك. الإمن: شرث ساعات الماره : ويكانين هيمان ندرس باده: د. جحد البيروت 1.5.3:17/0/3..> (أجدى عن خيسية اس<u>كلة</u> على ان يكون اليؤال السيادس من هينها (): Replace the force system shown in fig (1) by a wrench. Find the magnitude of the moment and the coordinates of point P in the y-Z plane through which the resultant force of the wrench passes. (2: In the equilibrium position shown in fig (2), the uniform bar AB has a mass of 50 kg and supports the 200 kg load at A. Calculate the tension T in the cable and the magnitude of the force at B. 93: A 4 meter bar of negligible weight vests in a horizontal position on the smooth planes shown in fig (3). Find the distance X at which load T= 100N should be placed from point B to keep the bar in the horizontal position and find the reactions at A and B. (). The pipe ACDE is supported by ball and socket joints at A and E and by the wire DF as shown in fig(4). Determine the tension in the wire when a 640 N load is applied at B. 95: Find the projection of the 100N tension force of the cord CE on the hinge axis BA, also find the angle. G6: Find the forces in members AF, FE and DE of the truss shown in fig (6). # University of Technology Mechanical Engionering Department Re-set Exami ation 2010/2011 anon 0000 Subject: Engineering Mechanics, 1* Year Examiner(s); Dr. A.Al Beiruti Exam Time: Three Hours Date: 13 / 9 /2011 Ozzańska o w Answer Five Qestions Only ## All Questions Carry Equal Marks Q1: Find R of the two forces shown in fig(1). Express R as a force vector using i & j on the x & y axes. Find also the angle between R and the x-axis. Q2: Find the resultant R of the force system shown in figure(2) and show where it cuts the x-axis. Q3: If the tension T in the cable AB shown in figure (3) is 24KN, find the moment of T about O. Q4: Replace the force system shown in figure(4) by a wrench resultant and find the coordinates of point P in the XZ plane through which the resultant will pass. Q5: The uniform 15 m pole shown in figure (5) has a mass of 150 Kg and is supported by its ends A and B against the smooth vertical walls and by the tension T in the vertical cable, find the reactions at A and B. Q6: Calculate the forces in members AB, BG and CD for the truss shown in figure(6): Q7: Find the centroid of the shaded area shown in figure(7). Note: Figures of each question are required in your answers. **GOOD LUCK** Fig Q1 Fig Q2 Fig Q3 Fig Q4. Fig Q6 FgQ7 # University o echnology Mechanical Engine ring Department Final Examinat on 2010/2011 ies I st Year Bruti Subject: Engineering Mechanics 1 st Year Examiner(s): Dr.Ahmad Al-Beiruti Exam Time: Three Hours Date:9/6/2011 # Answer Five (Sestions Only All Questions Casy Equal Marks Q1: Find the resultant R of the force system shown in figure (1), show its position with respect to point O. Show also where R cuts the X-axis. Q2: Bar AC supports two 400 N loads as shown in fig (2). Rollers at A and C rest against smooth surfaces and cable BD is attached at B. Find (a) the tension in cable BD. (B) the reactions at A and C. Q3: Find the projection of the force F = 100 N in the chain AB shown in fig (3) about a line joining point C and D. Q4: Find the resultant R of the three forces and a couple shown in fig (4) , move it to point A with its moment . Q5: In the truss shown in fig (5) , find the forces in members AB , FE and BE . Q6: Find the centroid of the shaded area shown in fig (6). Note: Figures of each question are required in your answers |
 | |
 | S-12 | |------|-----------|------|------| | | GOOD LUCK | | | Fig Q1 Fig Qs Fig Q5 Fig Q2 Fig Q4 Fig Q6 - Q1: Find the resultant R of the two forces shown in Fig (1). Express R as a force vector in terms of i & j on the x-and y axes. Find also the angle between R and the x-axis. - Q2: If the projection of the force I on the line BD is 75 N, find the magnitude of the force F. Fig (2). - Q3: The uniform bar AB shown in Fig (3) has a mass of 50 Kg and supports the 200 Kg load at A. Calculate the tension T and the reaction forces at B. - Q4: Replace the force system shown in Fig (4) by a wrench resultant and find the coordinates of point P in the y-z plane through which the wrench resultant will pass. - Q5: The uniform horizontal bar shown in Fig (5) has a mass of 240 Kg and is Supported by the two cables at B and C and by the ball and socket joint at O. Calculate the tension T in cable AC and the reaction at O. - Q6: In the truss shown in Fig (6),calculate the force in members AB, CD, BG fig (6) projection [D. Replace the force system shown in the (3) by a single force. Reat. X find a $\mathbb{Q}_{\mathbb{R}}^{n}$ Replace the force system shown in the (3) by a single force. \mathbb{R} at X^{n} and a moment M , Qds. All the moment of the force. For about the line 310 in 1200 Son afind Africa. | | الدمة اكيواونجرة صنصا | ۰ ۱۱ م | | | | | |---|---|------------------|---|--|--|--| | قسم هادسة الأكاني و السعدات، | | | | | | | | ۲۰۰ (المرجلين) | ول للعائي الدراسي ۲/۲۰۰۲ | امتحان القصل الأ | | | | | | ن: ساعتان و الروي | الزم | | أله رجلة : [الدح لا ك | | | | | س العادة: د . الحمد السيراوي | اً أَ مَدِنَ | 1 grand | Makes supplied | | | | | د. باسم رادریسی | r chlastan | , Y, • • • | 1 5 / No. 1 6 1/24 | | | | | 1. | Amore the | following . | | | | | | The tension of the projected con one day is | in the word stem in property of the | tension in 19 | C. Mr. Pad | | | | | | (Re way to 0 /0)
for 0-230° . (10) | | 91 | | | | | Cosce smel show | Porce Egypton Show where it interes | | 0.00 00.000 00.000 | | | | | De Regolace ARe 1 | numeral M. | | | | | | | F,=40] | " = (20 1 4 60 j) N | | 1 2 6 6 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | F1 = 4611 | $\frac{3}{f_{g}^{2}} = \left(-\frac{100}{100} - 3\right)$ 1918. (2) | * | fig (1) | | | | | | All Diagrapora | र्वतम् आ | | | | | B المرحلة الارث المراحية المحادث الدور الاول كم الدولس 2003 2001 الدو بالمحادث الدول الاول المراحي الدور الاول كم الدولس 2003 2003 الدور الاول المراحي المراحية المراحي المراحية ا Q1- Replace the three forces and couple by an equivalent force **R** at z , and a couple M. Specify M and the magnitude of **R**.Fig.(1) (Q2-) Replace the force system shown in fig.(2) by a wrench resultant. Fine the coordinates of point p in the 9-2 plane through which the resultan force of the wrench will pass. n bull-and --socket Joint at A in the horizontal floor. The ball end B restauguinst the smooth vertical walls as shown. Compute the forces exerted by the walls and the floor on the ends of the shaft. Fig. (3). Q-4 Calculate the forces in members FG. 1(G. and GD for the loaded Q-3. The uniform 7-m steel shall has a mass of 200 kg and is supported by Q-5 A 600N horizontal force is applied to pin A of the frame shown in fig.(5). Determine the forces acting on the two vertical members of the frame. frame. Q-6 For the shaded area shown in Fig.(6), find: a- The centriod. b- The moment of inertia about the varxis Best wishes cuntilever truss. Fig.(4). #### **Answer Five Questions Only** - Q1:If the Resultant of the two Forces shown in Fig (1) is 1000 N. Find: the angle O.Also find the angle between the resultant R and the horizontal. - Q2: Find the resultant of the Force System shown in Fig (2) and find its position with respect to point A. - Q3:In the equilibrium position shown in fig (3), find the distance (x) and the reactions at A &B. - Q4:In Fig (4), Find the component of the Force F=340 N along the line AB, also find the angle O between F and the component. - Q5:In Fig (5), replace the two Forces and single couple by a wrench and find the coordinates of point P in the y-z plane through which the wrench will Pass. - Q6: The uniform 7m steel shaft has a mass of 200 Kg and is supported by a ball & socket joint at A in the horizontal floor. B is a ball end resting against the smooth vertical walls as shown in Fig (6), Find the Forces at A & B. - Q7: In the truss shown in Fig (7) Find the Forces in members AB, BC & DE. #### University ≥ Technology Mechanical Engi©cering Department Re-set Exami → tion 2010/2011 anon Subject: Engineering Mechanics, 1* Year Examiner(s); Dr. A.Al Beiruti Exam Time: Three Hours Date: 13 / 9 /2011 Answer Five Qestions Only # All Questions Carry Equal Marks Q1: Find R of the two forces shown in fig(1). Express R as a force vector using i & j on the x & y axes. Find also the angle between R and the x-axis. Q2: Find the resultant R of the force system shown in figure(2) and show where it cuts the x-axis. Q3: If the tension T in the cable AB shown in figure (3) is 24KN, find the moment of T about O. Q4: Replace the force system shown in figure(4) by a wrench resultant and find the coordinates of point P in the XZ plane through which the resultant will pass. Q5: The uniform 15 m pole shown in figure (5) has a mass of 150 Kg and is supported by its ends A and B against the smooth vertical walls and by the tension T in the vertical cable, find the reactions at A and B. Q6: Calculate the forces in members AB, BG and CD for the truss shown in figure(6): Q7: Find the centroid of the shaded area shown in figure(7). Note: Figures of each question are required in your answers. Fig Q1 Fig Q2 Fig Q3 Fig Q4. Fig Qs FgQ7 # University o Pechnology Mechanical Engine ring Department Final Examinat (2nd 2010/2011 Desk Frincepa Subject: Engineering Mechanics I st Year Examiner(s): Dr.Ahmad Al-Beiruti Exam Time: Three Hours Date:9/6/2011 # Answer Five (estions Only All Questions Cay Equal Marks Q1: Find the resultant R of the force sys@m shown in figure (1), show its position with respect to point O. Show also where R cuts the X-axis. Q2: Bar AC supports two 400 N loads as shown in fig (2). Rollers at A and C rest against smooth surfaces and cable BD is attached at B. Find (a) the tension in cable BD. (B) the reactions at A and C. Q3: Find the projection of the force F = 100 N in the chain AB shown in fig (3) about a line joining point C and D. Q4: Find the resultant R of the three forces and a couple shown in fig (4), move it to point A with its moment . Q5: In the truss shown in fig (5) , find the forces in members AB , FE and BE . Q6: Find the centroid of the shaded area shown in fig (6). Note: Figures of each question are required in your answers Fig Q5 Fig Q2 Fig Q4 Fig Q6 Answer Five Questions Only المادة : الميكانيك الهندسي المرحثة: الأولى Q1:If the Resultant of the two Forces shown in Fig (1) is 1000 N. Find: the angle O.Also find the angle between the resultant R and the horizontal. Q2: Find the resultant of the Force System shown in Fig (2) and find its position with respect to point A. Q3:In the equilibrium position shown in fig (3), find the distance (x) and the reactions at A & B. Q4:In Fig (4), Find the component of the Force F=340 N along the line AB, also find the angle O between F and the component. Q5:In Fig (5), replace the two Forces and single couple by a wrench and find the coordinates of point P in the y-z plane through which the wrench will Pass. Q6: The uniform 7m steel shaft has a mass of 200 Kg and is supported by a ball & socket joint at A in the horizontal floor. B is a ball end resting against the smooth vertical walls as shown in Fig (6), Find the Forces at A & B. Q7: In the truss shown in Fig (7) Find the Forces in members AB, BC & DE. | | — | | |----------------------------------|--------------------------|-----------------------------| | الزمن: 3 ساعات | امتحان الدور ألاون للعام | الجامعة التكنولوجية | | القاريخ: 2009/6/1 | 2017/2008 | قسم هندسية المكانن والمعدات | | الممتحن : لجنة الميكانيك الهندسي | 8 | المادة والميكانيك الهندسي | | | | | ### Answer five uestions Only - Q1: Find the resultant R of the two forces shown in Fig (1) .Express R as a force vector in terms of i & j on the x-and y axes . Find also the angle between R and the x-axis . - Q2: If the projection of the force F on the line BD is $75\,N$, find the magnitude of the force F .Fig (2) . - Q3: The uniform bar AB shown in Fig (3) has a mass of 50 Kg and supports the 200 Kg load at A.Calculate the tension T and the reaction forces at B. - Q4: Replace the force system shown in Fig (4) by a wrench resultant and find the coordinates of point P in the y-z plane through which the wrench resultant will pass. - Q5: The uniform horizontal bar shown in Fig (5) has a mass of 240 Kg and is Supported by the two cables at B and C and by the ball and socket joint at O. Calculate the tension T in cable AC and the reaction at O. - Q6: In the truss shown in Fig (6),calculate the force in members AB, CD, BG fig (6) فسسم هندة المفائخ والمعوات را لحامعة التكنولوهم 2004 Uny Statics المرحله: الايرك. الإمن: شرث ساعات الماره : ويكانين هيمان ندرس باده: د. جحد البيروت 10/3:17/0/3..> (أجدى عن خيسية اس<u>كلة</u> على ان يكون اليؤال السيادس من هينها (): Replace the force system shown in fig (1) by a wrench. Find the magnitude of the moment and the coordinates of point P in the y-Z plane through which the resultant force of the wrench passes. (2: In the equilibrium position shown in fig (2), the uniform bar AB has a mass of 50 kg and supports the 200 kg load at A. Calculate the tension T in the cable and the magnitude of the force at B. 93: A 4 meter bar of negligible weight vests in a horizontal position on the smooth planes shown in fig (3). Find the distance X at which load T= 100N should be placed from point B to keep the bar in the horizontal position and find the reactions at A and B. (). The pipe ACDE is supported by ball and socket joints at A and E and by the wire DF as shown in fig(4). Determine the tension in the wire when a 640 N load is applied at B. 95: Find the projection of the 100N tension force of the cord CE on the hinge axis BA, also find the angle. G6: Find the forces in members AF, FE and DE of the truss shown in fig (6). ### University of Technology Mechanical Engionering Department Re-set Exami ation 2010/2011 anon 0000 Subject: Engineering Mechanics, 1* Year Examiner(s); Dr. A.Al Beiruti Exam Time: Three Hours Date: 13 / 9 /2011 Ozzańska o w Answer Five Qestions Only ### All Questions Carry Equal Marks Q1: Find R of the two forces shown in fig(1). Express R as a force vector using i & j on the x & y axes. Find also the angle between R and the x-axis. Q2: Find the resultant R of the force system shown in figure(2) and show where it cuts the x-axis. Q3: If the tension T in the cable AB shown in figure (3) is 24KN, find the moment of T about O. Q4: Replace the force system shown in figure(4) by a wrench resultant and find the coordinates of point P in the XZ plane through which the resultant will pass. Q5: The uniform 15 m pole shown in figure (5) has a mass of 150 Kg and is supported by its ends A and B against the smooth vertical walls and by the tension T in the vertical cable, find the reactions at A and B. Q6: Calculate the forces in members AB, BG and CD for the truss shown in figure(6): Q7: Find the centroid of the shaded area shown in figure(7). Note: Figures of each question are required in your answers. **GOOD LUCK** Fig Q1 Fig Q2 Fig Q3 Fig Q4. Fig Q6 FgQ7 # University o echnology Mechanical Engine ring Department Final Examinat on 2010/2011 ies I st Year Bruti Subject: Engineering Mechanics 1 st Year Examiner(s): Dr.Ahmad Al-Beiruti Exam Time: Three Hours Date:9/6/2011 ## Answer Five (Sestions Only All Questions Casy Equal Marks Q1: Find the resultant R of the force system shown in figure (1), show its position with respect to point O. Show also where R cuts the X-axis. Q2: Bar AC supports two 400 N loads as shown in fig (2). Rollers at A and C rest against smooth surfaces and cable BD is attached at B. Find (a) the tension in cable BD. (B) the reactions at A and C. Q3: Find the projection of the force F = 100 N in the chain AB shown in fig (3) about a line joining point C and D. Q4: Find the resultant R of the three forces and a couple shown in fig (4) , move it to point A with its moment . Q5: In the truss shown in fig (5) , find the forces in members AB , FE and BE . Q6: Find the centroid of the shaded area shown in fig (6). Note: Figures of each question are required in your answers |
 | |
 | S-12 | |------|-----------|------|------| | | GOOD LUCK | | | Fig Q1 Fig Qs Fig Q5 Fig Q2 Fig Q4 - Q1: Find the resultant R of the two forces shown in Fig (1). Express R as a force vector in terms of i & j on the x-and y axes. Find also the angle between R and the x-axis. - Q2: If the projection of the force I on the line BD is 75 N, find the magnitude of the force F. Fig (2). - Q3: The uniform bar AB shown in Fig (3) has a mass of 50 Kg and supports the 200 Kg load at A. Calculate the tension T and the reaction forces at B. - Q4: Replace the force system shown in Fig (4) by a wrench resultant and find the coordinates of point P in the y-z plane through which the wrench resultant will pass. - Q5: The uniform horizontal bar shown in Fig (5) has a mass of 240 Kg and is Supported by the two cables at B and C and by the ball and socket joint at O. Calculate the tension T in cable AC and the reaction at O. - Q6: In the truss shown in Fig (6),calculate the force in members AB, CD, BG fig (6) the tension force along the line CD. Also find Or between the tension force and the projection [Replace the force system shown in tio. (3) by a single force. Reat. X and a montent M , If the moment of the force (1) about the line 3D in 1200 Son afind 4%, $()_{n}|_{n}$ | | انهادمة الأيتواونهرة صن | ı · · | | | | | | |--|--|--|------------------|--|--|--|--| | قسم هادسه المحالات | | | | | | | | | /۲۰۰۲ (المؤجلين) | لأول للعاكم الدراسس ٢٠٠٢ | امتحان القصل ا | | | | | | | ازمن: ساعمان د | υ | <u> </u> | الدر حلة: ١١،٠٠٠ | | | | | | درس العادة: د . الحمد السيروك | A | 1970 | الملاة : حكامل | | | | | | د. باسم رادریان | | $_{1}$ \mathbf{Y}_{1} \cdot \mathbf{Y}_{2} | التاريخ : ١٠٠٠ و | | | | | | 1. | Florence the f | ollan 9 . | | | | | | | The tension in the projected composite projected composite solling | the court stems | tension on MC | ort lind | | | | | | 92: In Py (6) de | termine: le angle O for : m 0-230°. (in | akich Filgro
Ethe Historia | | | | | | | Corce smel show a | Rich 77 Mars
a Cyslen Shown
where it interse | in (in (3) try o | Ali measured | | | | | | De Repolar ARe Con | en cystem shawn
ment Al. | in the Control to the | Ad. | | | | | | | | | | | | | | | F,=40 J 2 3 | = (20 1 + 60j) N | | F=60N1 71 1 1 | | | | | | 9 0 1 | - Fg = (-110 i - 30 | カッ (学学)
*********************************** | fig (1) | | | | | | F1 = 4011 | Plg. (2) | | | | | | | | i i | All Dinguescons di | k 4µ0 | | | | | | B المراجعة الاران المراجعة الاران المراجعة الاران المراجعة الاران المراجعة الاران المراجعة الاران المراجعة المرا Q1- Replace the three forces and couple by an equivalent force **R** at z , and a couple M. Specify M and the magnitude of **R**.Fig.(1) (Q2) Replace the force system shown in fig.(2) by a wrench resultant. Fine the coordinates of point p in the 9-2 plane through which the resultan force of the wrench will pass. n bull-and --socket Joint at A in the horizontal floor. The ball end B restauguinst the smooth vertical walls as shown. Compute the forces exerted by the walls and the floor on the ends of the shaft. Fig. (3). Q-4 Calculate the forces in members FG. 1(G. and GD for the loaded Q-3. The uniform 7-m steel shall has a mass of 200 kg and is supported by Q-5 A 600N horizontal force is applied to pin A of the frame shown in fig.(5). Determine the forces acting on the two vertical members of the ug.(3). Determine the forces acting on the two vertical members of the frame. Q-6 For the shaded area shown in Fig.(6), find; a- The centriod, b- The moment of inertia about the sanxis Best wishes cuntilever truss. Fig.(4). ### **Answer Five Questions Only** - Q1:If the Resultant of the two Forces shown in Fig (1) is 1000 N. Find: the angle O.Also find the angle between the resultant R and the horizontal. - Q2: Find the resultant of the Force System shown in Fig (2) and find its position with respect to point A. - Q3:In the equilibrium position shown in fig (3), find the distance (x) and the reactions at A &B. - Q4:In Fig (4), Find the component of the Force F=340 N along the line AB, also find the angle O between F and the component. - Q5:In Fig (5), replace the two Forces and single couple by a wrench and find the coordinates of point P in the y-z plane through which the wrench will Pass. - Q6: The uniform 7m steel shaft has a mass of 200 Kg and is supported by a ball & socket joint at A in the horizontal floor. B is a ball end resting against the smooth vertical walls as shown in Fig (6), Find the Forces at A & B. - Q7: In the truss shown in Fig (7) Find the Forces in members AB, BC & DE. (6) fig (7. #### University of Technology Mechanical Engi@cering Department Re-set Exami ation 2010/2011 anon Subject: Engineering Mechanics, 1" Year Examiner(s); Dr. A.Al Beiruti Exam Time: Three Hours Date: 13 / 9 /2011 Answer Five Qestions Only ### All Questions Carry Equal Marks Q1: Find R of the two forces shown in fig(1). Express R as a force vector using i & j on the x & y axes . Find also the angle between R and the x-axis. Q2: Find the resultant R of the force system shown in figure(2) and show where it cuts the x-axis. Q3: If the tension T in the cable AB shown in figure (3) is 24KN, find the moment of T about O. Q4: Replace the force system shown in figure(4) by a wrench resultant and find the coordinates of point P in the XZ plane through which the resultant will pass. Q5: The uniform 15 m pole shown in figure (5) has a mass of 150 Kg and is supported by its ends A and B against the smooth vertical walls and by the tension T in the vertical cable, find the reactions at A and B. Q6: Calculate the forces in members AB, BG and CD for the truss shown in figure(6): Q7: Find the centroid of the shaded area shown in figure (7). Note: Figures of each question are required in your answers. Fig Q1 Fig Q2 Fig Q3 5 m Fig Qs FgQ7